Researchers find 'missing link'

December 03, 2020

Otago researchers have found the "missing link between stress and infertility".

Published in The Journal of Neuroscience, and led by Professor Greg Anderson of the Centre for Neuroendocrinology, the research has confirmed in laboratory testing that a population of nerve cells near the base of the brain - the RFRP neurons - become active in stressful situations and then suppress the reproductive system.

"A revolutionary step forward that has become available to neuroscientists in recent years is the ability to control the activity of selected groups of neurons - to either silence or ramp up their activity, and then monitor the outcomes," Professor Anderson says.

"We used cutting edge transgenic techniques to show that when the activity of the RFRP cells is increased, reproductive hormones are suppressed - in a similar manner to what happens during stress, or during exposure to the stress hormone cortisol.

"Amazingly, when we used cortisol to suppress the reproductive hormones but also silenced the RFRP neurons, the reproductive system continued to function as if cortisol wasn't there at all - proving that the RFRP neurons are a critical piece of the puzzle in stress-induced suppression of reproduction."

The reaction was most evident in females.

Professor Anderson started researching the role of RFRP neurons in controlling fertility in mammals about a decade ago.

"I became interested in whether these neurons might be what causes fertility to be suppressed during chronic stress, after reading that these cells become active during stress. This is a question that has remained stubbornly unanswered over the past decades.

"Although it is known that stress steroids - like cortisol - are probably part of the mechanism involved, it is also known that the brain cells that control reproduction are unable to respond to cortisol, so there seemed to be a missing link in the circuit somewhere.

"We have now shown that the RFRP neurons are indeed the missing link between stress and infertility. They become active in stressful situations - perhaps by sensing the increasing levels of cortisol - and they then suppress the reproductive system."

It is possible drugs could be used to block the actions of the RFRP neurons, and that will be the focus of further research for Professor Anderson.

"We'd like to see if we can overcome stress-induced infertility using drugs which block the actions of the RFRP neurons.

"For women struggling with infertility, drugs which block the actions of the RFRP neurons may prove to be a novel therapy. From what we know about these neurons, such a drug wouldn't have any side-effects.

"There are such drugs available, but they're not approved for human use and they would likely need refining," he says.
-end-
You can read the journal article here

University of Otago

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.