Astrophysicists Solve Mystery Of Gas Flow From Sunspots

December 03, 1997

One of the classic problems of solar physics has been solved, and the solution turns out to be a model of solar gas flow first proposed by a University of Rochester astrophysicist in 1988.

In a paper to appear in the December 4 issue of Nature, John H. Thomas and collaborator Benjamin Montesinos of Madrid's Laboratory for Space Astrophysics and Fundamental Physics present a more realistic version of the siphon-flow model, which predicts how gas flows from sunspots into the solar atmosphere. The results of their model match in considerable detail the observations reported by another research group in the September 4 issue of Nature. Thomas calls this recent observational evidence "the clincher" in support of the siphon-flow model.

The work could also offer insights into other astrophysical processes that involve strong magnetic fields and jets of gas, such as when stars form or die -- an area that's the focus of much research. "Unlike most gas or plasma flows in space, sunspots can be observed in great detail," says Thomas, former chairman of the Solar Physics Division of the American Astronomical Society and a scientific editor of the Astrophysical Journal. "They can serve as a test bed for our understanding of similar flows throughout the universe."

Indeed, some astrophysicists think that siphon flows analogous to those in sunspots may occur on a galactic scale.

Sunspots have mystified humans ever since Galileo's first telescopic observations in 1611. Sunspots mark areas on the Sun's surface where the star's magnetic field becomes so intense that a buoyant tube of magnetism literally pops through the Sun's surface. The magnetic field disrupts the outward convection of heat, resulting in dark Earth-sized splotches that are some 2,500 degrees Celsius cooler than the rest of the solar surface. As many as 30 sunspots may be visible on the Sun's surface at any given time; they last anywhere from one hour to three months.

Sunspot activity exhibits an 11-year cycle, with the number of sunspots next expected to peak in 2000 or 2001. Periods of high sunspot activity also usher in an increase in the number of solar flares -- intense bursts of magnetic energy hurling energetic particles out from the Sun. When these flares reach the Earth's magnetic field, they can wreak havoc with electrical lines, communications satellites, and even automatic garage door openers.

The solar puzzle that has absorbed Thomas is the Evershed flow, a flow of gas emanating from sunspots that has perplexed astrophysicists for nearly 90 years. The September observations, published by researchers from the Canary Islands Institute of Astrophysics and the High Altitude Observatory in Boulder, Colorado, demonstrate -- as Thomas first hypothesized in 1988 -- that the flow follows along arched magnetic field lines that emerge from within the sunspot and then dive back down below the solar surface near its outer edge.

"An ionized gas like that in the Sun's atmosphere flows strictly along lines of magnetism," says Thomas, a professor of mechanical engineering and of astronomy. "The magnetic field in a sunspot is shaped roughly like a sheaf of wheat -- with the base rooted beneath the Sun's surface and each stalk representing a discrete tube of magnetic flux. The original siphon-flow model held that gas would flow outward along field lines extending well beyond the sunspot, but little of this outward flow was ever detected outside the sunspot. Now we know that most of the flow returns into the Sun at the outer edge of the sunspot, along low-lying, arched magnetic field lines."

The original siphon-flow model was first proposed in 1968 by Friedrich Meyer and Hermann Schmidt of the Max Planck Institute for Astrophysics. But Thomas, who spent a year in the early 1970s working with Meyer and Schmidt in Munich, realized in the mid-1980s that the early siphon-flow model had some shortcomings.

"The original theory did not accurately describe the flow of gas in the photosphere, the region of the solar atmosphere closest to the sun's surface," Thomas says. "It assumed that the flowing gas had no effect on the configuration of the magnetic field, but this is not true in the photosphere, where most of the flow occurs."

Since Thomas' 1988 modifications to Meyer and Schmidt's theory, he has become the siphon-flow model's main proponent, penning a half-dozen scientific papers -- most of them with Montesinos -- that have steadily filled in the model's details.

Thomas' sunspot research is funded by NASA.
-end-


University of Rochester

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.