Nav: Home

Gamma-Ray Bursts: Spindown Of Cosmic Flywheels

December 03, 1998

Gamma-ray bursts (GRB) are short lived sources of energetic radiation observed at random positions in the sky at a rate of about 2 per day. Several of them have been identified with distant galaxies, roughly halfway between us and the end of the observable universe. This large distance makes them extremely energetic phenomena, corresponding to the complete conversion into energy of a mass of the order of a giant planet, in a time span of a few seconds. The extreme properties of these sources make them one of the most hotly debated mysteries in astrophysics.

By identifying two key elements of a puzzle, research at the Max Planck Institute for Astrophysics has shown how a rapidly spinning neutron star can quite naturally turn itself into a Gamma-ray burster. A neutron star rotating at a period of a millisecond or so contains the right amount of energy in rotation to power a GRB. Such spinning neutron stars occur in X-ray binary stars (of which there are a few hundred in our own galaxy). By mass transfer from its companion, the neutron star in such a system is spun up like a flywheel.

The main problem consists in finding a sufficiently powerful "brake" to extract the rotation energy from such a spinning star, since in an ordinary X-ray binary system the forces acting on the neutron star are only very feeble.

It has been known that a neutron star starts oscillating spontaneously if it rotates fast enough, and in the process radiates gravitational waves (as described by General Relativity). This oscillation is excited much like the squeaking of a glazed car brake, where the brake represents the neutron star and the brake lining the gravitational wave. It was also known that a magnetic field at the surface of the star can spin it down and radiate away ist rotation energy in the form of an electromagnetic wave (as observed in detail in the pulsar in the Crab nebula). But to brake the star within a few seconds by this process, a magnetic field strength of 1012 Tesla is needed, and so far there did not seem to be a very good reason why a neutron star would suddenly get magnetized to such a fantastic field strength.

Henk Spruit at the Max Planck Institute for Astrophysics in Garching, Germany, has now found the two missing pieces of the puzzle, and shown that a sudden magnetization is in fact quite likely for a rapidly rotating neutron star (Henrik Spruit, Gamma-ray bursts from X-ray binaries, Astronomy & Astrophysics, Vol. 341, Issue 1, L1 - L4, 1998). First, it turns out that due to the negative temperature dependence of neutron star matter, the gravitational wave instability is a runaway process. After a slow initial phase lasting a few hundred years, the amplitude of the oscillation grows explosively in hours or minutes. Secondly, the rotation of different parts of the star is braked to a different extent by the gravitational radiation they emit. The resulting differential rotation between interior and outer parts of the star strengthens the weak intial magnetic field of the star by "winding up" of the field lines.

When the field has become strong enough to float from the interior to the surface, at a field strength of about 1013 T, the entire remaining rotation energy of the star is radiated electromagnetically in a few seconds. The properties of this model are so far in good agreement with all characteristics of GRB.
-end-
Published: 3-12-98
Contact: Hendrik Spruit
Max Planck Institute for Astrophysics,
Garching/Germany
Phone: (+49 89) 32 99 - 32 20
Fax: (+49 89) 32 99 - 32 35
-end-


Max-Planck-Gesellschaft

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Earth's Magnetic Field Secrets: An Illusion Mixed With Reality
by Dennis Brooks (Author)

Magnetic Fields: Expanding American Abstraction, 1960s to Today
by Valerie Cassel Oliver (Author), Lowery Stokes Sims (Author), Erin Dziedzic (Editor), Melissa Messina (Editor)

NOW 2 kNOW Electro-Magnetic Fields
by Dr. T G D'Alberto (Author)

Know Your Magnetic Field: Change Your Thinking, Change Your Life.
by William E. Gray (Author)

Power Tools for Health: How Pulsed Magnetic Fields (Pemfs) Help You
by Msc William Pawluk MD (Author), Caitlin Layne (Author)

Conversations on Electric and Magnetic Fields in the Cosmos (Princeton Series in Astrophysics)
by Eugene N. Parker (Author)

The Automatic Message, the Magnetic Fields, the Immaculate Conception (Atlas Anti-Classics)
by Andre Breton (Author), Philippe Soupault (Author), Paul Eluard (Author), David Gascoyne (Translator), Antony Melville (Translator), Jon Graham (Translator)

The Magnetic Fields
by André Breton (Author), Philippe Soupault (Author), David Gascoyne (Translator)

Numerical Computation of Electric and Magnetic Fields
by Charles W. Steele (Author)

PEMF - The Faster, More Effective Way to Relieve Your Pain: Pulsed Electro Magnetic Field Therapy
by Alane Paulley

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...