Dartmouth researchers find that low doses of arsenic have broad impact on hormone activity

December 04, 2006

Dartmouth Medical School investigators are learning more about how low doses of arsenic, such as the levels found in drinking water in many areas of the United States, affect human physiology. In a paper published online on Dec. 2 in the journal Chemical Research in Toxicology, the researchers report that three different steroid hormones all show similar responses to arsenic, suggesting a broader effect and a common mechanism of arsenic on how these hormones function.

"Since most of the health consequences of exposure to arsenic - various cancers, diabetes, heart and vascular disease, reproductive and developmental effects, etc. - involve these same steroid receptors, we think that disruption of their normal function could explain, in large part, how arsenic can influence so many disease risks," says Joshua Hamilton, one of the authors on this study and the director of the Center for Environmental Health Sciences at Dartmouth and Dartmouth's Superfund Basic Research Program on Toxic Metals.

Hamilton's laboratory had earlier found that arsenic disrupts the activity of the glucocorticoid receptor, and this follow up study considered the progesterone and mineralocorticoid receptors, which regulate a wide range of biological processes. This current work was done in collaboration with Jack Bodwell, the lead author on this paper and a research associate professor of physiology at Dartmouth Medical School.

Hamilton, Bodwell, and their team found that arsenic appears to suppress the ability of all three of these critical receptors to respond to their normal hormone signals. Chemicals that disrupt steroid hormone receptor signaling are called endocrine disruptors, and this study provides further evidence that arsenic, a metal, does not behave like other endocrine disruptors such as pesticides.

"Arsenic does not activate these receptors, as some endocrine disruptors do, by mimicking the natural hormone, nor does it block the ability of the normal hormones to activate their specific receptor, as most other endocrine disruptors do," says Hamilton, who is also a professor of pharmacology and toxicology at Dartmouth Medical School. "Nor does it affect the ability of the hormone-activated receptor to move to the nucleus of the cell or to bind to DNA to initiate gene expression. Yet, somehow arsenic still strongly affects the ability of these hormone-activated receptors to regulate gene expression. There's still a lot more to learn."

The study also looked into the effects of different levels of arsenic on these receptors. At very low doses (comparable to what is found in drinking water at the current and previous U.S. regulatory limits, in the range of 5-50 ppb) arsenic enhances hormone-stimulated gene expression, by two- to three-fold. At slightly higher doses (in the range of 50-200 ppb, commonly found in drinking water from contaminated wells in New Hampshire and elsewhere in the U.S.) arsenic has the exact opposite effect, strongly and almost completely inhibiting hormone-stimulated gene expression by these receptors. This non-conventional dose-response suggests that arsenic might have very different biological effects at the lower and higher doses.

"Elucidating these complex biological effects of arsenic on hormone signaling at different doses will be critical to our overall understanding of how arsenic influences human health, and should be considered as an important component of determining the overall disease risk of people who are exposed to arsenic in their drinking water, " says Hamilton.
The work is funded by grants to Dartmouth collaborators Hamilton and Bodwell from the National Institute of Environmental Health Sciences, a component of the National Institutes of Health. Both researchers are members of the NIEHS-funded Superfund Basic Research Program at Dartmouth and Dartmouth's Center for Environmental Health Sciences. Co-authors on the study include Julie A. Gosse, and Athena P. Nomikos, both of Dartmouth and both recipients of training fellowships from Dartmouth's Superfund Basic Research Program.

Dartmouth College

Related Arsenic Articles from Brightsurf:

New map reveals global scope of groundwater arsenic risk
Up to 220 million people worldwide, with approximately 94% of them in Asia, could be at risk of drinking well water containing harmful levels of arsenic, a tasteless, odorless and naturally occurring poison.

River-groundwater hot spot for arsenic
Naturally occurring groundwater arsenic contamination is a problem of global significance, particularly in South and Southeast Asian aquifers.

Natural organic matter influences arsenic release into groundwater
Millions of people worldwide consume water contaminated with levels of arsenic that exceed those recommended by the World Health Organization.

New study finds inaccuracies in arsenic test kits in Bangladesh
Researchers at the University of Michigan have raised serious concerns with the performance of some arsenic test kits commonly used in Bangladesh to monitor water contamination.

Bayreuth researchers discover new arsenic compounds in rice fields
University of Bayreuth researchers, together with scientists from Italy and China, have for the first time sys-tematically investigated under which conditions, and to what extent, sulphur-containing arsenic com-pounds are formed in rice-growing soils.

Kids rice snacks in Australia contain arsenic above EU guidelines: Study
Three out of four rice-based products tested have concentrations of arsenic that exceed the EU guideline for safe rice consumption for babies and toddlers.

Arsenic in drinking water may change heart structure
Among young adults, drinking water contaminated with arsenic may lead to structural changes in the heart that raise their risk of heart disease.

Arsenic-breathing life discovered in the tropical Pacific Ocean
In low-oxygen parts of the ocean, some microbes are surviving by getting energy from arsenic.

Parboiling method reduces inorganic arsenic in rice
Contamination of rice with arsenic is a major problem in some regions of the world with high rice consumption.

UN University compares technologies that remove arsenic from groundwater
A UN University study compares for the first time the effectiveness and costs of many different technologies designed to remove arsenic from groundwater -- a health threat to at least 140 million people in 50 countries.

Read More: Arsenic News and Arsenic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.