High-resolution imaging with contrast agent shows promise in osteoarthritis research

December 04, 2006

An innovative combination of existing technologies shows promise for noninvasive, high-resolution imaging of cartilage in research on the progression and treatment of the common degenerative disease osteoarthritis.

Microcomputed tomography (microCT) - which yields three-dimensional X-ray images with a resolution 100 times higher than clinical CT scans - is commonly used to image bone for osteoporosis research but has not been useful for imaging soft biological tissues such as cartilage. These tissues simply don't interfere with the microCT's X-rays as they pass through a sample, and therefore don't show up on scans.

But by combining microCT with an X-ray-absorbing contrast agent that has a negative charge, researchers at the Georgia Institute of Technology were able to image the distribution of negatively charged molecules called proteoglycans (PGs). These molecules are critical to the proper functioning of cartilage.

"By detecting PG content and distribution, the technique reveals information about both the thickness and composition of the cartilage -- important factors for monitoring the progression and treatment of osteoarthritis," said Associate Professor Marc Levenston in Georgia Tech's George W. Woodruff School of Mechanical Engineering.

He and Associate Professor Robert Guldberg, also in the School of Mechanical Engineering, collaborated to establish and validate the principle of the technique, dubbed Equilibrium Partitioning of an Ionic Contrast agent-microCT, or EPIC-microCT. Then they applied the technique in vitro to monitor the degradation of bovine cartilage cores and to visualize the thin layer of cartilage in an intact rabbit knee.

"This technique will allow pharmaceutical researchers to obtain more detailed information about the effects of new drugs and other treatment strategies for treating osteoarthritis," Levenston said.

A report on the research will be published Dec. 12 issue in the journal Proceedings of the National Academy of Science of the United States of America and will appear in the only early edition during the week of Dec. 4. The National Science Foundation, National Institute of Arthritis and Musculoskeletal and Skin Disorders, and the Arthritis Foundation funded the work.

Experiments conducted by Ph.D. student Ashley Palmer established the principles and protocol of EPIC-microCT. Researchers first immersed cartilage samples in the contrast agent solution and waited for the agent to diffuse into the tissue. Tissue with fewer negatively charged PGs absorbed more of the negatively charged contrast agent, and tissue with a higher PG concentration repelled it.

Researchers then used EPIC-microCT to detect the concentrations of the contrast agent, which allowed them to calculate the amount of PGs in different parts of the cartilage. Because degrading cartilage loses PGs over time, researchers could monitor the progression of tissue changes. In addition, differences in the X-ray signal of cartilage and bone allowed researchers to isolate the cartilage layer on a rabbit joint and determine its thickness, indicating that this technique also can be used to measure tissue thinning during disease progression.

In follow-on research funded by a new, two-year grant from the National Institutes of Health, the researchers will gather additional quantitative data and use the technique to examine the very thin cartilage of rat knee joints. Researchers will nondestructively evaluate osteoarthritis progression and then attempt to use this approach to monitor cartilage changes over time in vivo, or inside the same live animals.

"Ultimately, if we can monitor cartilage changes with good resolution and do it with little or no invasion of the tissue in live animals, then we can track osteoarthritis progression and the effects of drug therapy or other treatments over time," Guldberg said.

Researchers have already addressed a significant technical hurdle in making the imaging technique feasible. They researched several contrast agents and tried two others before choosing HexabrixTM, which is approved by the Food and Drug Administration for use as a contrast agent for various imaging procedures in humans. When diluted, it produced an X-ray signal that allowed distinction of bone from cartilage.

"The ability to separate bone from cartilage in the microCT scan is a big deal," Guldberg said. "It suggests that this technique may work in vivo."

But dilution reduces the contrast agent's sensitivity and therefore the technique's PG-monitoring capability, the authors write in their paper. "In this next phase of research, we hope to find a one-shot concentration of the contrast agent that works for analyzing both cartilage thickness and composition," said Levenston, the lead author on the paper.

In addition, the researchers must address technical issues involving the in vivo delivery and retention of a sufficient volume and concentration of the contrast agent, they note in the paper.

"But even if the technique only works for in vitro studies, it still provides useful quantitative, high-resolution, 3D images that researchers can use to nondestructively monitor cartilage degeneration and even regeneration in small animal models," Guldberg said.
-end-
RESEARCH NEWS & PUBLICATIONS OFFICE
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

MEDIA RELATIONS CONTACT:
  1. John Toon (404-894-6986); E-mail: (jtoon@gatech.edu)


TECHNICAL CONTACTS:
  1. Marc Levenston (404-894-4219); E-mail: (levenston@gatech.edu)
  2. Robert Guldberg (404-894-6589); E-mail: (robert.guldberg@me.gatech.edu)
  3. Ashley Palmer (404-385-6779); E-mail: (ashley.palmer@gatech.edu)


WRITER: Jane M. Sanders

Several color images of EPIC-microCT scans and the researchers are available from the media relations contacts listed above. Also, after the embargo lifts, the images can be downloaded in high-resolution format at www.gtresearchnews.gatech.edu.

Georgia Institute of Technology

Related Osteoarthritis Articles from Brightsurf:

Major savings possible with app-based osteoarthritis treatment
Osteoarthritis treatment conducted digitally via an app costs around 25% of what conventional care costs, according to a study from Lund University in Sweden published in the research journal PLOS ONE.

New approach to treating osteoarthritis advances
Injections of a natural 'energy' molecule prompted regrowth of almost half of the cartilage lost with aging in knees, a new study in rodents shows.

Bone drug may be beneficial for knee osteoarthritis
Bisphosphonates (a class of drugs that prevent the loss of bone density and used to treat osteoporosis and similar diseases) appear to be safe and beneficial for osteoarthritis patients.

Certain jobs linked to higher risk of knee osteoarthritis
Workers in jobs that typically involve heavy lifting, frequent climbing, prolonged kneeling, squatting, and standing face an increased risk of developing knee osteoarthritis.

App helps reduce osteoarthritis pain
By performing a few simple physical exercises daily, and receiving information about their disease regularly, 500 osteoarthritis patients were able to on average halve their pain in 6 months -- and improve their physical function.

Osteoarthritis can increase your risk for social isolation
In a study published in the Journal of the American Geriatrics Society, researchers examined information from the European Project on OSteoArthritis (EPOSA) study.

High rates of opioid prescriptions for osteoarthritis
Opioids work against severe pain but the risks of side effects and addiction are high.

Disease burden in osteoarthritis is similar to rheumatoid arthritis
Osteoarthritis (OA) has traditionally been viewed as a highly prevalent but milder condition when compared with rheumatoid arthritis (RA), and some may believe that it is part of a normal aging process requiring acceptance, not treatment.

3D printing may help treat osteoarthritis
In a Journal of Orthopaedic Research study, scientists used 3D printing to repair bone in the joints of mini-pigs, an advance that may help to treat osteoarthritis in humans.

Finger joint enlargements may be linked to knee osteoarthritis
Heberden's nodes (HNs) are bony enlargements of the finger joints that are readily detectable in a routine physical exam and are considered hallmarks of osteoarthritis.

Read More: Osteoarthritis News and Osteoarthritis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.