How to herd atoms

December 04, 2006

It has long been known that it is possible to confine electrons or atoms in atomic structures in the same way as sheep can be shut in a pen. Physicists at the Max Planck Institute for Microstructure Physics in Halle have now discovered a strange thing: if the atomic fences have the right shape and the substrate, temperature and other parameters are adjusted appropriately, then randomly vapour-deposited atoms arrange themselves in regular structures within the circular fencing - as if they were sheep arranging themselves neatly in a pen (Physical Review Letters, 2nd November 2006).

For some years, numerous groups of researchers all over the world have been concentrating on forcing conduction electrons (the electrons used for the conduction of electronic current) on the surface of certain materials into patterns using deliberately planted atoms. Their intention is to influence the growth of thin films of material. When new atoms, called adatoms, are vapour-deposited on these electron structures, electrical attraction and repulsion makes them more likely to settle in some areas rather than others, depending on the density of electrons on the material. Physicists hope that they will be able to create thin films of material with predetermined characteristics by tailoring the density of electrons.

The researchers at the Max Planck Institute for Microstructure Physics together with physicists from the University of Halle and the University of Santiago de Compostella in Spain have investigated a special form of electronic structure. They observed electrons in a dense, closed ellipsis of cobalt atoms on a copper substrate. The conduction electrons can be imagined like a gas or a liquid; they form standing waves in circular atomic "pens" similar to waves in a small pond.

The physicists then simulated the effects of vapour-depositing cobalt adatoms. The new atoms interact with the cobalt atoms in the pen and with the enclosed electrons. There are tiny fluctuations in the energy levels which only have an effect at low temperatures of around 10 to 20 kelvins. These fluctuations cause the adatoms to prefer to move to positions with higher densities of electrons, provided the number of vapour-deposited adatoms is correct, the temperature is low enough and the pen sufficiently secure.

The cobalt atoms arrange themselves, so to speak, like the waves in a pond of electrons in ellipses. With adatoms, which can move more easily at lower temperatures, - for example atoms of the element cerium and a circular enclosure, the researchers created regular structures on the circles themselves; this was similar to allowing sheep to run randomly into a pen where they obediently line up, spaced at regular intervals and in concentric circles.

The next step will be to offer experimental proof of the simulations, which should be possible with current atomic scanning force microscopy, and to find new ways to create thin films.
Original work:

V.S. Stepanyuk, N.N. Negulayev; L. Niebergall, R. C. Longo, and P. Bruno

Adatom self-organisation induced by quantum confinement of surface electrons

Physical Review Letters 97, 186403 (2006), published 2nd November 2006


Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to