Reducing air pollution could increase rice harvests in India

December 04, 2006

Berkeley -- New research from the University of California indicates that reductions of human-generated air pollution could create unexpected agricultural benefits in one of the world's poorest regions. These new findings will be published online the week of Dec. 4 in the journal Proceedings of the National Academy of Sciences (PNAS).

Rice harvests increased dramatically in India during the "Green Revolution" of the 1960s and 1970s, making the country self-sufficient in its staple food. Harvest growth has slowed since the mid-1980s, however, raising concerns that food shortages could recur in this densely populated and poor nation. Several explanations for the slowdown have been proposed, but until now, none took into account the complex interactions of two pollution-related sources of climate change: atmospheric brown clouds (ABCs), which form from soot and other fine particles in the air (collectively termed aerosols), and the better-known problem of global warming caused by greenhouse gases such as carbon dioxide.

In the PNAS paper, Maximilian Auffhammer at UC Berkeley's College of Natural Resources, and V. "Ram" Ramanathan and Jeffrey Vincent, researchers at UC San Diego, analyze historical data on Indian rice harvests and examine the combined effects of atmospheric brown clouds and greenhouse gases on growing conditions. They find that the combined effects were negative and were greater after the mid-1980s than before, coinciding with the observed slowdown in harvest growth. They estimate that harvests would have been 20 to 25 percent higher during some years in the 1990s if the negative climate impacts had not occurred.

Previous research by an international scientific team led by Ramanathan, professor of atmospheric sciences at Scripps Institution of Oceanography, found that brown clouds have made the Indian subcontinent drier and cooler. Although this suggests the existence of a climatic tradeoff, with reductions in aerosols potentially unleashing a stronger warming trend, the current study indicates that joint reductions in the two types of pollutants would, in fact, benefit Indian rice farmers. This is because reductions in aerosols would enhance rainfall, while reductions in greenhouse gases would reduce the higher nighttime temperatures that can negatively affect the growth of the rice plant.

"Greenhouse gases and aerosols in brown clouds are known to be competing factors in global warming," said Ramanathan. "The major finding of this interdisciplinary study is that their effects on rice production are additive, which is clearly an unwelcome surprise."

Peter Timmer, senior fellow at the Center for Global Development, an independent, non-profit think tank in Washington, D.C., added that the study "links a sophisticated model of agricultural production in India to climate and pollution models, with the critical finding that 'brown cloud' pollution has already cost India millions of tons of food production."

The researchers noted that the impact of ABCs and greenhouse gases on agriculture provides another incentive for controlling air pollution in heavily polluted Asia. "Air pollution control measures in India have been motivated mainly by concern about the health of residents of the urban areas where most of the pollution is generated," said Vincent, an economist and environmental research director at the UC Institute on Global Conflict and Cooperation (IGCC). "Our study provides an additional motivation related to the economic health of poor rural areas."

Auffhammer, UC Berkeley assistant professor of agricultural and resource economics, added that "while this study focuses on India's rain-fed states, ABCs exist throughout Asia's main rice-producing countries, many of which have experienced decreasing growth rates in harvests, too. Furthering our understanding of how air pollution affects agricultural output is very important to ensure food security in the world's most populous region."
-end-
The paper is the result of a three-year collaboration between Auffhammer, Ramanathan and Vincent. Their work was supported in part by the Giannini Foundation, the National Science Foundation, the National Oceanic and Atmospheric Administration and IGCC.

University of California - Berkeley

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.