Neuroscientist Robert Nitsch receives EU's most highly remunerated research funding award

December 04, 2012

The European Research Council (ERC) has earmarked some EUR 2.5 million to fund research being conducted by neuroscientist Professor Dr. Robert Nitsch at the Mainz University Medical Center. His work focuses on the role played by so-called bioactive lipids in the brain that assumingly impair signal transmission at cerebral synapses, which act as 'switching stations' in the brain. Disturbances of this kind to cerebral network homeostasis, i.e., in the balance between inhibition and excitation in the brain, occur for example in people with mental illnesses and epilepsy.

"Understanding the correlations between cause and effect in network homeostasis is potentially the key to successfully treating patients with mental illnesses or epilepsy," said Professor Dr. Robert Nitsch, Director of the Institute of Microscopic Anatomy and Neurobiology at the Mainz University Medical Center. Specifically, Nitsch wants to find out how the signaling pathways of bioactive lipids are controlled and monitored in the brain. It is thus important to gain insight into the molecular and cellular mechanisms as well as into the structure of the molecules involved. In addition, Nitsch aims to study the functional consequences in the brain caused by changes to these molecules. "Once we have the necessary knowledge, it may be possible to find strategies to help us modify these signaling pathways. Assuming we are successful, it may also be possible to develop pharmaceutical preparations that can be used in people with mental health disorders," said Nitsch, who is also Coordinator of the Research Unit Translational Neurosciences (FTN) at Johannes Gutenberg University Mainz.

The highly promising work that Nitsch has already undertaken jointly with his colleagues at the FTN indicates that this research goal may well be attainable. Pilot studies in humans have demonstrated that brain function is disturbed in the presence of mutation of the genes responsible for encoding modulators of the signaling pathways of bioactive lipids. Such disturbances to network homeostasis, i.e., the balance between inhibition and excitation in the brain, also occur in patients with mental illnesses. According to Nitsch, research into the signaling pathways of bioactive lipids is also highly relevant to understanding cardiovascular disorders and the development of tumors.

"The award of an ERC Advanced Grant to Professor Dr. Robert Nitsch once again demonstrates impressively the success of the appointment policy employed by the Mainz University Medical Center," emphasized the Chief Scientific Officer of the Mainz University Medical Center, Professor Dr. Reinhard Urban. In 2009, he managed to persuade Nitsch, who was born in Leverkusen, to leave Berlin's Charité University Hospital and to come to work in Mainz.

In November 2010, Johannes Gutenberg University Mainz decided to adopt a focused strategic scientific approach to its work in neuroscience and established the Research Unit Translational Neurosciences (FTN). "This achievement is confirmation of the academic prominence enjoyed by Professor Dr. Robert Nitsch in the field of neuroscience," stated Professor Dr. Georg Krausch, President of Johannes Gutenberg University Mainz. "Moreover, this success also confirms that our strategy of forming scientific and academic research units at our university is bearing fruit. We are pleased this additional funding will enable Professor Dr. Robert Nitsch to systematically continue his research activities and the associated profile building."

ERC Advanced grants are awarded to outstanding researchers to enable them to undertake projects considered to be highly speculative due to their innovative approach but which, because of this innovation, can open up new potential opportunities in the field in question. Only researchers with a proven record of significant accomplishments who have successfully worked at the highest international level for at least ten years are eligible to receive a grant. The only criteria considered by the European Research Council when deciding whether to award a grant are the achievements of the researcher in question and the nature of their research project. An ERC grant thus represents recognition of the individual work of the recipient. The ERC Advanced Grant, the European Union's most prestigious research funding award, is comparable in terms of value to the Gottfried Wilhelm Leibniz Award, which is the most prestigious German research award. Scientists at JGU, including the Mainz University Medical Center and the Institute of Molecular Biology (IMB), have been highly successfully with regard to obtaining sponsorship from the European Research Council (ERC). Since the first round of applications in 2007, they have received 11 research grants from the ERC with a total value of EUR 23 million, consisting of seven Advanced Grants and four Starting Grants for up-and-coming young researchers.
-end-


Johannes Gutenberg Universitaet Mainz

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.