Cork the key to unlocking the potential of graphene

December 04, 2012

Scientists have taken inspiration from one of the oldest natural materials to exploit the extraordinary qualities of graphene, a material set to revolutionise fields from computers and batteries to composite materials.

Published today in Nature Communications, a Monash University study led by Professor Dan Li has established, for the first time, an effective way of forming graphene, which normally exists in very thin layers, into useful three-dimensional forms by mirroring the structure of cork.

Graphene is formed when graphite is broken down into layers one atom thick. In this form, it is very strong, chemically stable and an excellent conductor of electricity. It has a wide range of potential applications, from batteries that are able to recharge in a matter of seconds, to biological tissue scaffolds for use in organ transplant and even regeneration.

Professor Li, from the Department of Materials Engineering, said previous research had focused mainly on the intrinsic properties and applications of the individual sheets, while his team tackled the challenge of engineering the sheets into macroscopically-useable 3D structures.

"When the atomic graphene sheets are assembled together to form 3D structures, they normally end up with porous monoliths that are brittle and perform poorly," Professor Li said.

"It was generally thought to be highly unlikely that graphene could be engineered into a form that was elastic, which means it recovers well from stress or pressure."

The researchers used cork, which is lightweight yet strong, as a model to overcome this challenge.

PhD student, Ling Qiu, also from the Department of Materials Engineering, said modern techniques have allowed scientists to analyse the structure of such materials and replicate nature's efficient design.

"The fibres in cork cell walls are closely packed to maximise strength and individual cells connect in a honeycomb structure which makes the material very elastic," Mr Qiu said.

Using a method called freeze casting, the researchers were able to form chemically modified graphene into a 3D structure that mimicked cork. The graphene blocks produced were lighter than air, able to support over 50,000 times their own weight, good conductors of electricity and highly elastic - able to recover from over 80 per cent deformation.

"We've been able to effectively preserve the extraordinary qualities of graphene in an elastic 3D form, which paves the way for investigations of new uses of graphene - from aerospace to tissue engineering," Professor Li said.

"Mimicking the structure of cork has made possible what was thought to be impossible."
-end-


Monash University

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.