Stanford geoscientist cites critical need for basic research to unleash promising energy sources

December 04, 2012

"There is a critical need for scientists to address basic questions that have hindered the development of emerging energy resources, including geothermal, wind, solar and natural gas, from underground shale formations," said Mark Zoback, a professor of geophysics at Stanford University. "In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery."

Zoback, an authority on shale gas development and hydraulic fracturing, served on the U.S. Secretary of Energy's Committee on Shale Gas Development. His remarks will be presented in collaboration with Jeff Tester, an expert on geothermal energy from Cornell University, and Murray Hitzman, a leader in the study of "energy critical elements" from the Colorado School of Mines.

Enhanced geothermal systems

"One option for transitioning away from our current hydrocarbon-based energy system to non-carbon sources is geothermal energy - from both conventional hydrothermal resources and enhanced geothermal systems," said Zoback, a senior fellow at the Precourt Institute for Energy at Stanford.

Unlike conventional geothermal power, which typically depends on heat from geysers and hot springs near the surface, enhanced geothermal technology has been touted as a major source of clean energy for much of the planet.

The idea is to pump water into a deep well at pressures strong enough to fracture hot granite and other high-temperature rock miles below the surface. These fractures enhance the permeability of the rock, allowing the water to circulate and become hot.

A second well delivers steam back to the surface. The steam is used to drive a turbine that produces electricity with virtually no greenhouse gas emissions. The steam eventually cools and is re-injected underground and recycled to the surface.

In 2006, Tester co-authored a major report on the subject, estimating that 2 percent of the enhanced geothermal resource available in the continental United States could deliver roughly 2,600 times more energy than the country consumes annually.

But enhanced geothermal systems have faced many roadblocks, including small earthquakes that are triggered by hydraulic fracturing. In 2005, an enhanced geothermal project in Basel, Switzerland, was halted when frightened citizens were shaken by a magnitude 3.4 earthquake. That event put a damper on other projects around the world.

Last year, Stanford graduate student Mark McClure developed a computer model to address the problem of induced seismicity.

Instead of injecting water all at once and letting the pressure build underground, McClure proposed reducing the injection rate over time so that the fracture would slip more slowly, thus lowering the seismicity. This novel technique, which received the 2011 best paper award from the journal Geophysics, has to be tested in the field.

Shale gas

Zoback also will also discuss challenges facing the emerging shale gas industry. "The shale gas revolution that has been under way in North America for the past few years has been of unprecedented scale and importance," he said. "As these resources are beginning to be developed globally, there is a critical need for fundamental research on such questions as how shale properties affect the success of hydraulic fracturing, and new methodologies that minimize the environmental impact of shale gas development."

Approximately 30,000 shale gas wells have already been drilled in North America, he added, yet fundamental challenges have kept the industry from maximizing its full potential. "The fact is that only 25 percent of the gas is produced, and 75 percent is left behind," he said. "We need to do a better job of producing the gas and at the same time protecting the environment."

Earlier this year, Zoback and McClure presented new evidence that in shale gas reservoirs with extremely low permeability, pervasive slow slip on pre-existing faults may be critical during hydraulic fracturing if it is to be effective in stimulating production.

Even more progress is required in extracting petroleum, Zoback added. "The recovery of oil is only around 5 percent, so we need to do more fundamental research on how to get more hydrocarbons out of the ground," he said. "By doing this better we'll actually drill fewer wells and have less environmental impact. That will benefit all of the companies and the entire nation."

Energy critical elements

Geology plays a surprising role in the development of renewable energy resources.

"It is not widely recognized that meeting domestic and worldwide energy needs with renewables, such as wind and solar, will be materials intensive," Zoback said. "However, elements like platinum and lithium will be needed in significant quantities, and a shortage of such 'energy critical elements' could significantly inhibit the adoption of these otherwise game-changing technologies."

Historically, energy critical elements have been controlled by limited distribution channels, he said. A 2009 study co-authored by Hitzman found that China produced 71 percent of the world's supply of germanium, an element used in many photovoltaic cells. Germanium is typically a byproduct of zinc extraction, and China is the world's leading zinc producer.

About 30 elements are considered energy critical, including neodymium, a key component of the magnets used in wind turbines and hybrid vehicles. In 2009, China also dominated the neodymium market.

"How these elements are used and where they're found are important issues, because the entire industrial world needs access to them," Zoback said. "Therefore, if we are to sustainably develop renewable energy technologies, it's imperative to better understand the geology, metallurgy and mining engineering of these critical mineral deposits."

Unfortunately, he added, there is no consensus among federal and state agencies, the global mining industry, the public or the U.S. academic community regarding the importance of economic geology in securing a sufficient supply of energy critical elements.

Panel discussion

Immediately following the Dec. 4 AGU talk, Zoback will participate in a panel discussion at 5:35 p.m. on the challenges and opportunities for energy and resource recovery. The panel will be led by Joseph Wang of the Lawrence Berkeley National Laboratory and will include William Brinkman of the U.S. Department of Energy's Office of Science; Marcia McNutt, director of the U.S. Geological Survey; and Jennifer Uhle of the U.S. Nuclear Regulatory Commission's Office of Nuclear Regulatory Research.

On Wednesday, Dec. 5, at 12:05 p.m., Zoback will deliver another talk on the risk of triggering small-to-moderate size earthquakes during carbon capture and storage.

Carbon capture technology is designed to reduce greenhouse gas emissions by capturing atmospheric carbon dioxide from industrial smokestacks and sequestering the CO2 in underground reservoirs or mineral deposits.

Zoback will outline several elements of a risk-based strategy for assessing the potential for accidentally inducing earthquakes in carbon dioxide reservoirs. The talk will be held in Room 2004, Moscone Center West.
-end-
Mark Shwartz writes about science and technology at the Precourt Institute for Energy at Stanford University.

Stanford University

Related Greenhouse Gas Emissions Articles from Brightsurf:

Using materials efficiently can substantially cut greenhouse gas emissions
Emissions from the production of materials like metals, minerals, woods and plastics more than doubled in 1995 - 2015, accounting for almost one-quarter of all greenhouse gas (GHG) emissions worldwide.

Climate change: Ending greenhouse gas emissions may not stop global warming
Even if human-induced greenhouse gas emissions can be reduced to zero, global temperatures may continue to rise for centuries afterwards, according to a simulation of the global climate between 1850 and 2500 published in Scientific Reports.

Climate-friendly Cooling Could Cut Years of Greenhouse Gas Emissions and Save US$ Trillions: UN
Energy-efficient cooling with climate-friendly refrigerants could avoid up to 460 billion tonnes of greenhouse gas equivalent being added to the atmosphere through 2060 - roughly equal to eight years of global emissions at 2018 levels.

Forests can be risky climate investments to offset greenhouse gas emissions
Given the tremendous ability of forests to absorb carbon dioxide from the atmosphere, some governments are counting on planted forests as offsets for greenhouse gas emissions -- a sort of climate investment.

Switching from general to regional anaesthesia may cut greenhouse gas emissions
Switching from general to regional anaesthesia may help cut greenhouse emissions and ultimately help reduce global warming, indicates a real life example at one US hospital over the course of a year, and reported in the journal Regional Anesthesia & Pain Medicine.

Women generate lower travel-related greenhouse gas emissions, NZ study finds
Women use more diverse modes of travel and generate lower greenhouse gas emissions than men, despite men being more than twice as likely to travel by bike, a New Zealand study has found.

Great potential in regulating plant greenhouse gas emissions
New discoveries on the regulation of plant emissions of isoprenoids can help in fighting climate change - and can become key to the production of valuable green chemicals.

Cable bacteria can drastically reduce greenhouse gas emissions from rice cultivation
The rice fields account for five percent of global emissions of the greenhouse gas methane, which is 25 times stronger than CO2.

Sugar ants' preference for pee may reduce greenhouse gas emissions
An unlikely penchant for pee is putting a common sugar ant on the map, as new research from the University of South Australia shows their taste for urine could play a role in reducing greenhouse gases.

Seeking better guidelines for inventorying greenhouse gas emissions
Governments around the world are striving to hit reduction targets using Intergovernmental Panel on Climate Change (IPCC) guidelines to limit global warming.

Read More: Greenhouse Gas Emissions News and Greenhouse Gas Emissions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.