Learning to control brain activity improves visual sensitivity

December 04, 2012

Training human volunteers to control their own brain activity in precise areas of the brain can enhance fundamental aspects of their visual sensitivity, according to a new study. This non-invasive 'neurofeedback' approach could one day be used to improve brain function in patients with abnormal patterns of activity, for example stroke patients.

Researchers at the Wellcome Trust Centre for Neuroimaging at UCL used non-invasive, real-time brain imaging that enabled participants to watch their own brain activity on a screen, a technique known as neurofeedback. During the training phase, they were asked to try and increase activity in the area of the brain that processes visual information, the visual cortex, by imagining images and observing how their brains responded.

After the training phase, the participants' visual perception was tested using a new task that required them to detect very subtle changes in the contrast of an image. When they were asked to repeat this task whilst clamping brain activity in the visual cortex at high levels, they found that those who had successfully learned to control their brain activity could improve their ability to detect even very small changes in contrast.

This improved performance was only observed when participants were exercising control of their brain activity.

Lead author Dr Frank Scharnowski, who is now based at the University of Geneva, explains: "We've shown that we can train people to manipulate their own brain activity and improve their visual sensitivity, without surgery and without drugs."

In the past, researchers have used recordings of electrical activity in the brain to train people to get better at various tasks, including decreased reaction times, altered emotional responses and even enhanced musical performance. In this study, the researchers used functional magnetic resonance imaging (fMRI) to provide the volunteers with real-time feedback on brain activity. The advantage of this technique is that you can see exactly where in the brain the training is having an effect, so you can target the training to particular brain areas that are responsible for specific tasks.

"The next step is to test this approach in the clinic to see whether we can offer any benefit to patients, for example to stroke patients who may have problems with perception, even though there is no damage to their vision," adds Dr Scharnowski.
-end-
The study, funded by the Wellcome Trust, Swiss National Science Foundation and the European Union, is published online today in the Journal of Neuroscience.

Wellcome Trust

Related Brain Activity Articles from Brightsurf:

Inhibiting epileptic activity in the brain
A new study shows that a protein -- called DUSP4 -- was increased in healthy brain tissue directly adjacent to epileptic tissue.

What is your attitude towards a humanoid robot? Your brain activity can tell us!
Researchers at IIT-Istituto Italiano di Tecnologia in Italy found that people's bias towards robots, that is, attributing them intentionality or considering them as 'mindless things', can be correlated with distinct brain activity patterns.

Using personal frequency to control brain activity
Individual frequency can be used to specifically influence certain areas of the brain and thus the abilities processed in them - solely by electrical stimulation on the scalp, without any surgical intervention.

Rats' brain activity reveals their alcohol preference
The brain's response to alcohol varies based on individual preferences, according to new research in rats published in eNeuro.

Studies of brain activity aren't as useful as scientists thought
Hundreds of published studies over the last decade have claimed it's possible to predict an individual's patterns of thoughts and feelings by scanning their brain in an MRI machine as they perform some mental tasks.

A child's brain activity reveals their memory ability
A child's unique brain activity reveals how good their memories are, according to research recently published in JNeurosci.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.

Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.

Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.

Read More: Brain Activity News and Brain Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.