Silkworms spin colored silks while on a 'green' dyed-leaf diet

December 04, 2013

For some 5,000 years, cultivated silkworms have been spinning luxurious white silk fibers destined for use in the finest clothing. But current dyeing practices produce wastewater that contains potentially harmful toxins, so scientists are turning to a new, "greener" dyeing method in which they coax already-colored fibers from the caterpillars by feeding them dyed leaves. Their findings are published in the journal ACS Sustainable Chemistry & Engineering.

Anuya Nisal, Kanika Trivedy and colleagues point out that dyeing textile fabrics is one of today's most polluting industries. The process requires huge quantities of water for bleaching, washing and rinsing, and it results in a stream of harmful wastewater that needs to be treated effectively before release into the environment. To make the industry greener and more environmentally friendly, researchers have been developing less toxic methods, including feeding dyed leaves to silkworms so they spin colored -- rather than white -- cocoons. But so far, this technique has only been tested with one type of dye, which is too pricey for large-scale production. Thus, the team turned to azo dyes, which are inexpensive and account for more than half of the textile dyes used today.

They dipped or sprayed mulberry leaves, the silkworm's food of choice, with azo dyes to see which ones, when consumed, would transfer to the silk. Of the seven dyes they tested, three were incorporated into the caterpillars' silk, and none seemed to affect the worms' growth. The scientists noticed that certain dye traits, such as the ability to dissolve in water, affected how well the dye worked. "These insights are extremely important in development of novel dye molecules that can be successfully used in this green method of producing colored silk fabrics," they conclude.
-end-
The authors cite funding from the CSIR-National Chemical Laboratory, Pune, and the Central Sericultural Research and Training Institute, Mysore.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.Follow us: TwitterFacebook

American Chemical Society

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.