Active component of grape seed extract effective against cancer cells

December 04, 2013

A University of Colorado Cancer Center study published online ahead of print in the journal Nutrition and Cancer describes the laboratory synthesis of the most active component of grape seed extract, B2G2, and shows this synthesized compound induces the cell death known as apoptosis in prostate cancer cells while leaving healthy cells unharmed.

"We've shown similar anti-cancer activity in the past with grape seed extract (GSE), but now we know B2G2 is its most biologically active ingredient which can be synthesized in quantities that will allow us to study the detailed death mechanism in cancer cells," says Alpna Tyagi, PhD, of the University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences. Tyagi works in the lab of CU Cancer Center investigator and Skaggs School of Pharmacy faculty member, Chapla Agarwal, PhD.

The group has spent more than a decade demonstrating the anti-cancer activity of GSE in controlled, laboratory conditions. For example, previous studies have shown the GSE effectiveness against cancer cells and have also shown its mechanism of action. "But until recently, we didn't know which constituent of GSE created this effect. This naturally occurring compound, GSE, is a complex mixture of polyphenols and also so far it has been unclear about the biologically active constituents of GSE against cancer cells," Tyagi says.

Eventually the group pinpointed B2G2 as the most active compound, but, "it's expensive and it takes a long time to isolate B2G2 from grape seed extract," Tyagi says.

This expense related to the isolation of B2G2 has limited the group's further exploration. So instead of purifying B2G2 from GSE, the group decided to synthesize it in the lab. The current study reports the success of this effort, including the ability to synthesize gram-quantity of B2G2 reasonably quickly and inexpensively.

In the paper's second half, the group shows anti-cancer activity of synthesized B2G2 similar in mechanism and degree to overall GSE effectiveness.

"Our goal all along has been a clinical trial of the biologically active compounds from GSE against human cancer. But it's difficult to earn FDA approval for a trial in which we don't know the mechanisms and possible effects of all active components. Therefore, isolating and synthesizing B2G2 is an important step because now we have the ability to conduct more experiments with the pure compound. Ongoing work in the lab further increases our understanding of B2G2′s mechanism of action that will help for the preclinical and clinical studies in the future," Tyagi says.
-end-


University of Colorado Anschutz Medical Campus

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.