How our nerves keep firing

December 04, 2013

SALT LAKE CITY, Dec. 4, 2013 -University of Utah and German biologists discovered how nerve cells recycle tiny bubbles or "vesicles" that send chemical nerve signals from one cell to the next. The process is much faster and different than two previously proposed mechanisms for recycling the bubbles.

Researchers photographed mouse brain cells using an electron microscope after flash-freezing the cells in the act of firing nerve signals. That showed the tiny vesicles are recycled to form new bubbles only one-tenth of a second after they dump their cargo of neurotransmitters into the gap or "synapse" between two nerve cells or neurons.

"Without recycling these containers or 'synaptic vesicles' filled with neurotransmitters, you could move once and stop, think one thought and stop, take one step and stop, and speak one word and stop," says University of Utah biologist Erik Jorgensen, senior author of the study in the Dec. 4 issue of the journal Nature.

"A fast nervous system allows you to think and move. Recycling synaptic vesicles allows your brain and muscles to keep working longer than a couple of seconds," says Jorgensen, a distinguished professor of biology. "This process also may protect neurons from neurodegenerative diseases like Lou Gehrig's disease and Alzheimer's. So understanding the process may give us insights into treatments someday."

A brain cell maintains a supply of 300 to 400 vesicles to send chemical nerve signals, using up to several hundred per second to release neurotransmitters, says the study's first author, postdoctoral fellow Shigeki Watanabe.

Recycling vesicles is called "endocytosis." Jorgensen and Watanabe named the process they observed "ultrafast endocytosis." They showed it takes one-tenth of a second for a vesicle to be recycled, and such recycling occurs on the edge of "active zone" - the place on the end of the nerve cell where the vesicles first unload neurotransmitters into the synapse between brain cells.

"It's like Whac-A-Mole: one vesicle goes down (fuses and unloads) and another pops up someplace else," Jorgensen says.

Jorgensen believes ultrafast endocytosis is the most common way of recycling vesicles, but says the study doesn't disprove two other, long-debated hypotheses: Earlier this year, Jorgensen, Watanabe and colleagues published a related study in the journal eLife revealing that ultrafast endocytosis occurs in nematode worms. The new study of hippocampal brain cells from mice "tells us that mammals - and thus humans - do it the same way," Jorgensen says. "The two papers together identify a process never previously seen - much faster than has been measured before."

Jorgensen and Watanabe conducted the study with M. Wayne Davis, a University of Utah research assistant professor of biology; and technician Berit Söhl-Kielczynski and neuroscientists Christian Rosenmund, Benjamin Rost and Marcial Camacho-Pérez, all of Germany's Charity University Medicine Berlin.

The study was funded by the National Institutes of Health, the European Research Council and the German Research Council. Jorgensen also is funded by his status as a Howard Hughes Medical Institute investigator and an Alexander von Humboldt Scholar.

Machine Gun Analogy for Vesicle Recycling

The process of a vesicle fusing to the nerve cell's wall from the inside, then releasing neurotransmitters into the synapse is known as "exocytosis." An analogy might be a bubble rising from boiling soup and releasing steam. The liquid part of the bubble fuses with the liquid in the soup, sooner or later to arise in another bubble.

The 2013 Nobel Prize in Physiology or Medicine went to three scientists who discovered key aspects of vesicle transport of cargo and exocytosis in nerve and other cells: which genes are required for vesicle transport, how vesicles deliver cargo to the correct locations, and how vesicles in brain cells release neurotransmitters to send a signal to the next brain neuron.

Jorgensen, Shigeki and colleagues studied the next step, endocytosis: how the membrane that forms vesicles (and nerve cell walls) is recycled to form new vesicles.

To illustrate the three possible mechanisms for recycling vesicles, Jorgensen compares vesicles with machine gun shells.

"You are fusing vesicles to the nerve cell membrane and expelling the neurotransmitter contents at extremely high rates," he says. "The synapse will use up its 'ammo' very quickly at these rates, so the cell needs to refill the empty shells."

Clathrin-mediated vesicle recycling is like "remaking the shell from scratch," he says, while kiss-and-run endocytosis is like picking up every empty shell casing and refilling them one at a time.

"Ultrafast endocytosis allows the synapse to whip up all of the empty shells by the handful, fill them, and put them back in line at incredibly fast rates so the machine gun never runs out of ammo," Jorgensen says.

Flash and Freeze for Nerve Cells in Action

Shigeki, Jorgensen and colleagues developed a method to photograph the tiny vesicles inside a nerve cell as the bubbles moved to the end of the cell, fused with the cell membrane, dumped their load of neurotransmitters into the gap or "synapse" between nerve cells, and then were recycled to reappear as new bubbles inside the nerve cell.

"We found a way to look at this process on a timescale that no one ever looked at before," Watanabe says.

First, the researchers grew hundreds of brain cells from the mouse hippocampus - the often-studied part of the brain required for memory formation - on quarter-inch-wide sapphire disks placed in petri dishes with growth medium.

They added an algae gene to mouse brain cells that made the neurons produce an "ion channel" - basically a switch - that is stimulated by light instead of electricity. Then the brain cells were placed in a super-cold, high-pressure chamber, at 310 degrees below zero Fahrenheit and pressure 2,000 times greater than Earth's atmosphere at sea level.

A wire cannot be routed into the chamber, which is why the cells were genetically programmed to be stimulated by light. The researchers flashed blue light on the mouse brain cells, making them "fire" neurotransmitter nerve signals. At the same time, the firing neurons were frozen with a blast of liquid nitrogen. To catch neurons in all stages of firing, the nerve cells were frozen at various times after the flash of blue light: 15, 30 and 100 milliseconds and one, three and 10 seconds.

"We built a new device to capture neurons performing fast behaviors," Jorgensen says. "It stops all motion in the cell - even membranes in the act of fusing.

"We call it flash and freeze," Watanabe says.

Next, the sapphire disks with neurons were put into liquid epoxy, which hardened and then were thin-sliced so the neurons could be photographed under an electron microscope. The ultrafast formation of recycled vesicles was visible.

"You see the outline of the membrane," Jorgensen says. "You see the bubbles or vesicles in different stages of formation."

Watanabe says about 3,000 mouse brain cell synapses were flashed, frozen and analyzed during the study. About 20 percent of the nerve cells had been fired and showed signs that nerve vesicles were being recycled.
-end-
University of Utah Communications
75 Fort Douglas Boulevard, Salt Lake City, UT 84113
801-581-6773 fax: 801-585-3350
http://www.unews.utah.edu

University of Utah

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.