'How much--and when?' Life-history trade-offs a factor in whole-organism performance

December 04, 2014

For nearly 40 years, one of the cornerstones of the study of adaptation has been the examination of "whole-organism performance capacities"--essentially, measures of the dynamic things animals do: how fast they can run; how hard they can bite; how far, fast, and high they can jump; and so on. Together, these functional attributes determine the performance of a species' ecology: the types of food one can eat; the ability to capture or locate prey; the ability to avoid predation; the ability of males to intimidate or, in some cases, prevent rival males from invading a territory; and many more.

Because whole-organism performance capacities are so integral to survival and fitness, performance has been extremely well studied. Such studies have generally been performed within the context of a theoretical framework called the ecomorphological paradigm, which states that an organism's whole-organism performance abilities (1) are affected by the organism's morphology and (2) affect that organism's fitness. The ecomorphological paradigm has been very successful as a heuristic guide for studying performance, but it is a relatively simple framework that leaves out a lot of important details about how performance is determined and evolves.

An organism has a finite pool of acquired energetic resources that it can invest in specific phenotypic traits, and so it cannot invest optimally in everything simultaneously. As a result, trade-offs in phenotypic trait expression occur at different stages of the organism's life history, where investment in certain traits is prioritized over investment in others. In the December 2014 issue of The Quarterly Review of Biology, Simon Lailvaux (University of New Orleans) and Jerry Husak (University of St. Thomas) posit that in order to get a more complete picture about the evolution of performance, an examination of whole-organism performance capacities must include a consideration of an organism's life-history trade-offs.

In their article, Lailvaux and Husak demonstrate that whole-organism performance capacities are subject to life-history trade-offs with other key determinants of fitness such as immunity, fecundity, behavior, and sexual signaling, and even with the expression of other kinds of whole-organism performance traits. They develop and suggest an extended ecomorphological paradigm that takes these trade-offs, as well as the integrative and multivariate nature of many kinds of performance, into account. They highlight studies that have adopted this life-history perspective on performance, and they show that this approach holds significant promise for understanding both the ecology and the evolution of performance traits. They also highlight specific aspects of the study of performance they believe deserve more attention in this regard, and they suggest several lines of future research likely to yield further insight into the nature of performance evolution.
S. P. Lailvaux and J. F. Husak, "The Life History of Whole-Organism Performance." The Quarterly Review of Biology v89n4 (December 2014), pp. 285-318. http://www.jstor.org/stable/10.1086/678567

The Quarterly Review of Biology, the premier review journal in biology, has presented insightful historical, philosophical, and technical treatments of important biological topics since 1926. The QRB publishes outstanding review articles of generous length that are guided by an expansive, inclusive, and often humanistic understanding of biology. Beyond the core biological sciences, the QRB is also an important review journal for scholars in related areas, including policy studies and the history and philosophy of science.

University of Chicago Press Journals

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.