El Niño's 'remote control' on hurricanes in the Northeastern Pacific

December 04, 2014

El Niño, the abnormal warming of sea surface temperatures in the Pacific Ocean, is a well-studied tropical climate phenomenon that occurs every few years. It has major impacts on society and Earth's climate - inducing intense droughts and floods in multiple regions of the globe. Further, scientists have observed that El Niño greatly influences the yearly variations of tropical cyclones (a general term which includes hurricanes, typhoons and cyclones) in the Pacific and Atlantic Oceans. However, there is a mismatch in both timing and location between this climate disturbance and the Northern Hemisphere hurricane season: El Niño peaks in winter and its surface ocean warming occurs mostly along the equator, i.e. a season and region without tropical cyclone (TC) activity. This prompted scientists to investigate El Niño's influence on hurricanes via its remote ability to alter atmospheric conditions such as stability and vertical wind shear rather than the local oceanic environment. Fei-Fei Jin and Julien Boucharel at the University of Hawai'i School of Ocean and Earth Science and Technology (SOEST) and I-I Lin at the National Taiwan University published a paper today in Nature that uncovers what's behind this "remote control."

Jin and colleagues uncovered an oceanic pathway that brings El Niño's heat into the Northeastern Pacific basin two or three seasons after its winter peak - right in time to directly fuel intense hurricanes in that region.

El Niño develops as the equatorial Pacific Ocean builds up a huge amount of heat underneath the surface and it turns into La Niña when this heat is discharged out of the equatorial region.

"This recharge/discharge of heat makes El Niño/La Niña evolve somewhat like a swing," said lead author of the study Jin.

Prior to Jin and colleagues' recent work, researchers had largely ignored the huge accumulation of heat occurring underneath the ocean surface during every El Niño event as a potential culprit for fueling hurricane activity.

"We did not connect the discharged heat of El Niño to the fueling of hurricanes until recently, when we noticed another line of active research in the tropical cyclone community that clearly demonstrated that a strong hurricane is able to get its energy not only from the warm surface water, but also by causing warm, deep water - up to 100 meters deep - to upwell to the surface," Jin continued.

Co-author Lin had been studying how heat beneath the ocean surface adds energy to intensify typhoons (tropical cyclones that occur in the western Pacific).

"The super Typhoon Hainan last year, for instance, reached strength way beyond normal category 5," said Lin. "This led to a proposed consideration to extend the scale to category 6, to be able to grasp more properly its intensity. The heat stored underneath the ocean surface can provide additional energy to fuel such extraordinarily intense tropical cyclones."

"The North-Eastern Pacific is a region normally without abundant subsurface heat," said Boucharel, a post-doctoral researcher at UH SOEST. "El Niño's heat discharged into this region provides conditions to generate abnormal amount of intense hurricanes that may threaten Mexico, the southwest of the US and the Hawaiian islands."

Furthermore, caution the authors, most climate models predict a slow down of the tropical atmospheric circulation as the mean global climate warms up. This will result in extra heat stored underneath the North-eastern Pacific and thus greatly increase the probability for this region to experience more frequent intense hurricanes.

Viewed more optimistically, the authors point out that their findings may provide a skillful method to anticipate the activeness of the coming hurricane season by monitoring the El Niño conditions two to three seasons ahead of potentially powerful hurricane that may result.
-end-
The School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa was established by the Board of Regents of the University of Hawai'i in 1988 in recognition of the need to realign and further strengthen the excellent education and research resources available within the University. SOEST brings together four academic departments, three research institutes, several federal cooperative programs, and support facilities of the highest quality in the nation to meet challenges in the ocean, earth and planetary sciences and technologies.

University of Hawaii at Manoa

Related Hurricanes Articles from Brightsurf:

Climate change causes landfalling hurricanes to stay stronger for longer
Climate change is causing hurricanes that make landfall to take more time to weaken, reports a study published 11th November 2020 in leading journal, Nature.

Hurricanes pack a bigger punch for Florida's west coast
Hurricanes, the United States' deadliest and most destructive weather disasters, are notoriously difficult to predict.

Hurricanes, heavy rains are critical for Hawai'i's groundwater supply
New research led by University of Hawai'i at Mānoa scientists indicates that rain brought to the islands by hurricanes and Kona storms can often be the most important precipitation for re-supplying groundwater in many regions of the island of O'ahu.

Texas A&M study: Marine heatwaves can strengthen hurricanes
Oceanographers have found that a hurricane can be considerably strengthened in the Gulf of Mexico through the compounding effects of two extreme weather events.

Hurricanes could be up to five times more likely in the Caribbean if tougher targets are missed
Global warming is dramatically increasing the risk of extreme hurricanes in the Caribbean, but meeting more ambitious climate change goals could up to halve the likelihood of such disasters in the region, according to new research.

Future Texas hurricanes: Fast like Ike or slow like Harvey?
Climate change will intensify winds that steer hurricanes north over Texas in the final 25 years of this century, increasing the odds for fast-moving storms like 2008's Ike compared to slow-movers like 2017's Harvey, according to new research.

Satellites have drastically changed how we forecast hurricanes
The powerful hurricane that struck Galveston, Texas on September 8, 1900, killing an estimated 8,000 people and destroying more than 3,600 buildings, took the coastal city by surprise.

Earthquakes, hurricanes and other natural disasters obey same mathematical pattern
Researchers from the Centre for Mathematical Research (CRM) and the Universitat Autònoma de Barcelona have mathematically described the frequency of several dangerous phenomena according to their size with more precision than ever.

Cold, dry planets could have a lot of hurricanes
Study overturns conventional wisdom that water is needed to create cyclones.

Climate simulations project wetter, windier hurricanes
New supercomputer simulations by climate scientists at Lawrence Berkeley National Laboratory have shown that climate change intensified the amount of rainfall in recent hurricanes such as Katrina, Irma, and Maria by 5 to 10 percent.

Read More: Hurricanes News and Hurricanes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.