The innate immune system condemns weak cells to their death

December 04, 2014

The "survival of the fittest" principle applies to cells in a tissue - rapidly growing and dividing cells are the fit ones. A relatively less fit cell, even if healthy and viable, will be eliminated by its more fit neighbors. Importantly, this selection mechanism is only activated when cells with varying levels of fitness are present in the same tissue. If a tissue only consists of less fit cells, then no so-called cell competition occurs. Molecular biologists from the University of Zurich and Columbia University are the first researchers to demonstrate in a study published in the scientific journal Science that this cellular selection process requires the innate immune system.

Innate immune system recognizes weaker cells

Using the fruit fly as a model the researchers demonstrate that during cell competition programmed cell death is activated in the weaker cells. This apoptosis is induced by the signaling protein "Spätzle" that docks onto Toll-related receptors. The Toll-related receptors are part of the ancient innate immune system and normally trigger a defense reaction to bacterial or fungal infection, but as shown by Meyer and colleagues it can also trigger apoptosis in relatively less fit cells. "Less fit cells are recognized and eliminated with the help of the communication pathway in the innate immune system", is how primary author Stefanie Meyer explains this astounding phenomenon. According to Professor Konrad Basler it is not yet clear whether the initial signal comes from the winner cells or the weaker loser cells. "We still don't know whether this involves the voluntary or forced suicide of the less-fit cells."

When the wrong ones win

Sometimes the stronger cell is not a healthy cell, for example during the development of a tumor cancer cells can "outcompete" their weaker neighbors. In this case it is the healthy cells that fall behind in terms of fitness and are consequently condemned to death by the cell competition mechanism. "Cancer cells use the innate immune system to drive out the healthy cells", sums up Laura Johnston from Columbia University. These new findings are of particular interest for cancer research and early detection of the disease. According to the researchers the innate immune system could serve to identify faster growing but not yet malignant cells - and thus represent a way to combat the disease at an early stage.
-end-
Further reading:

Stefanie Meyer, Marc Amoyel, Cora Bergantinos, Claire de la Cova, Claus Schertel, Konrad Basler, Laura Johnston, An ancient defense system operates in cell competition to eliminate unfit cells from developing tissues. Science. December 4, 2014. doi:10.1126/science.1258236

Contacts:

Claus Schertel
Institute of Molecular Biology
University of Zurich
E-Mail: claus.schertel@imls.uzh.ch
Tel. +41 44 635 31 92 / +41 77 460 38 47

Prof. Dr. Konrad Basler
Institute of Molecular Biology
University of Zurich
Tel. +41 44 635 31 10
Email: konrad.basler@imls.uzh.ch

Stefanie Meyer
Institute of Molecular Biology
University of Zurich
Email: stefanie.meyer@imls.uzh.ch

Bettina Jakob
Media Relations
University of Zurich
Tel. +41 44 634 44 39
Email: bettina.jakob@kommunikation.uzh.ch

University of Zurich

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.