What your father ate before you were born could influence your health

December 04, 2015

There is increasing evidence that parents' lifestyle and the environment they inhabit even long before they have children may influence the health of their offspring. A current study, led by researchers from the Novo Nordisk Foundation Center for Basic Metabolic Research, sheds light on how.

Researchers in Associate Professor Romain Barrès' laboratory compared sperm cells from 13 lean men and 10 obese men and discovered that the sperm cells in lean and obese men, respectively, possess different epigenetic marks that could alter the next generation's appetite, as reported in the medical journal Cell Metabolism.

A second major discovery was made as researchers followed six men before and one year after gastric-bypass surgery (an effective intervention to lose weight) to find out how the surgery affected the epigenetic information contained in their sperm cells. The researchers observed an average of 4,000 structural changes to sperm cell DNA from the time before the surgery, directly after, and one year later.

"We certainly need to further examine the meaning of these differences; yet, this is early evidence that sperm carries information about a man's weight. And our results imply that weight loss in fathers may influence the eating behaviour or their future children," says Romain Barrès.

Inspiration

"Epidemiological observations revealed that acute nutritional stress, e.g. famine, in one generation can increase the risk of developing diabetes in the following generations," Romain Barrès states. He also referenced a study that showed that the availability of food in a small Swedish village during a time of famine correlated with the risk of their grandchildren developing cardiometabolic diseases.

The grandchildren's health was likely influenced by their ancestors' gametes (sperm or egg), which carried specific epigenetic marks - e.g. chemical additions to the protein that encloses the DNA, methyl groups that change the structure of the DNA once it is attached, or molecules also known as small RNAs. Epigenetic marks can control the expression of genes, which has also been shown to affect the health of offspring in insects and rodents.

Molecular carrier

"In our study, we have identified the molecular carrier in human gametes that may be responsible for this effect," says Barrès.

By detecting differences in small RNA expressions (where the function is not yet determined) and DNA methylation patterns, the researchers have proven that weight loss can change the epigenetic information men carry in their spermatozoa. In other words, what is transmitted in the father's sperm can potentially affect the development of a future embryo and, ultimately, it can shape the child's physiology.

"We did not expect to see such important changes in epigenetic information due to environmental pressure," says Barrès. "Discovering that lifestyle and environmental factors, such as a person's nutritional state, can shape the information in our gametes and thereby modify the eating behaviour of the next generation is, to my mind, an important find," he adds.

Obesity

If we consider it in an obesity context, a worldwide heritable metabolic disorder which is sensitive to environmental conditions (diet and physical activity) the discovery that weight loss in fathers-to-be potentially affects the eating behaviour of their offspring is ground-breaking.

"Today, we know that children born to obese fathers are predisposed to developing obesity later in life, regardless of their mother's weight. It's another critical piece of information that informs us about the very real need to look at the pre-conception health of fathers" says Ida Donkin, MD and one of the lead authors of the paper. She continues, "And it's a message we need to disseminate in society."

"The study raises awareness about the importance of lifestyle factors, particularly our diet, prior to conception. The way we eat and our level of physical activity before we conceive may be important to our future children's health and development," says Soetkin Versteyhe, co-first author of the paper.

It is still early days in this field of research, but the study disrupts the current assumption that the only thing our gametes carry is genetic information, and there is nothing we can do about it. Traits that we once thought were inevitable could prove modifiable, and what we do in life may have implications not only for our own health but also the health of our children and even our grandchildren. This work opens up new avenues for investigations of possible intervention strategies to prevent the transmission of disorders such as obesity to future generations.
-end-


University of Copenhagen The Faculty of Health and Medical Sciences

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.