Nav: Home

Exploring how rice could survive salt stress

December 04, 2016

Rice is a staple for more than half of the world's population, yet it is also the most salt-sensitive cereal crop. KAUST researchers have studied the early responses of rice plants to moderately saline conditions and for the first time pinpointed new salt tolerance genetic loci1. The results could support breeding programs to improve global rice productivity.

"Thanks to the unique Plant Accelerator facility in Australia, which is run by Bettina Berger from the University of Adelaide, we could analyze numerous aspects of the growth of multiple plants simultaneously," said Mark Tester, KAUST professor of plant science and associate director of the University's Center for Desert Agriculture, who supervised KAUST Ph.D. student Nadia Al-Tamimi on the project.

The Plant Accelerator, created by Tester before he joined KAUST, is a facility that can grow thousands of plants at the same growth stage in pots on conveyor belts. Each plant moves automatically to be imaged daily by digital cameras, generating quantitative data on growth on a large scale--a technique called high-throughput non-invasive phenotyping.

Al-Tamimi's team grew two types of rice varieties--297 indica and 256 aus--alongside a control group and monitored them for 13 days under high- and low-salt conditions. They photographed the plants to monitor biomass and shoot development and measured transpiration levels (how much water the plants used) by weighing each pot daily.

Unlike many previous plant growth studies, the researchers made no prior assumptions about early stage growth in their analysis, using unbiased statistical methods to help analyze the high-throughput phenotypic data. They found that growth rate diminished in salt-treated soils, with a rapid slowing of growth immediately after the addition of salt. The indica lines fared better than aus, however, which led the team to uncover significant genetic differences between the varieties. By combining data on relative growth rate, transpiration rate and transpiration use efficiency (TUE) with a genome-wide association analysis, the researchers could search for genetic loci related to specific plant traits.

It was important to carefully standardize the process to be able to isolate influences.

"Nadia's systematic approach to ensure pot weight changes were purely due to transpiration--rather than from the soil surface--was key to including the transpiration data," Tester said. "It appears genes involved in TUE maintenance are crucial to the main vegetative stage of rice growth, while other factors are more significant at earlier stages."

Some genetic loci (for example, those connected with signaling processes) were important to growth in the first two to six days, while other loci became prominent later.

"This is perhaps the most astonishing aspect of this work--we can now provide genetic detailing in real time, pinpointing exactly when each locus comes into play during salt shock," Tester noted.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Rice Articles:

New rice fights off drought
Scientists at the RIKEN Center for Sustainable Resource Science (CSRS) have developed strains of rice that are resistant to drought in real-world situations.
Domesticated rice goes rogue
We tend to assume that domestication is a one-way street and that, once domesticated, crop plants stay domesticated.
Protecting rice crops at no extra cost
A newly identified genetic mechanism in rice can be utilized to maintain resistance to a devastating disease, without causing the typical tradeoff -- a decrease in grain yield, a new study reports.
Every grain of rice: Ancient rice DNA data provides new view of domestication history
Now, using new data collected samples of ancient, carbonized rice, a team of Japanese and Chinese scientists have successfully determined DNA sequences to make the first comparisons between modern and ancient rice.
Four newly identified genes could improve rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture.
Infants who ate rice, rice products had higher urinary concentrations of arsenic
Although rice and rice products are typical first foods for infants, a new study found that infants who ate rice and rice products had higher urinary arsenic concentrations than those who did not consume any type of rice, according to an article published online by JAMA Pediatrics.
New resource for managing the Mexican rice borer
A new article in the Journal of Integrated Pest Management provides information on the biology and life cycle of the Mexican rice borer (Eoreuma loftini), and offers suggestions about how to manage them.
Fighting rice fungus
Plant scientists are uncovering more clues critical to disarming a fungus that leads to rice blast disease and devastating crop losses.
The origin and spread of 'Emperor's rice'
Black rice was prized in ancient times for its color and is prized in modern times for its high levels of antioxidants, but its early history has been shrouded in mystery until now.
Trigger found for defense to rice disease
Biologists have discovered how the rice plant's immune system is triggered by disease, in a discovery that could boost crop yields and lead to more disease-resistant types of rice.

Related Rice Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...