Better mastery of heat flow leads to next-generation thermal cloaks

December 04, 2017

Ever heard of the invisibility cloak? It manipulates how light travels along the cloak to conceal an object placed behind it. Similarly, the thermal cloak is designed to hide heated objects from infrared detectors without distorting the temperature outside the cloak. Materials for such cloaks would need to offer zero thermal conductivity to help camouflage the heat. Now, Liujun Xu and colleagues from Fudan University, Shanghai, China, have explored a new mechanism for designing such materials. These findings published in EPJ B could have implications for manipulating the transfer of thermal energy as a way to ultimately reduce heat waste from fossil fuels and help mitigate energy crises.

In this work, for the first time the authors experimentally verify that the inner composition of materials, which presents a non-uniform periodic structure, can exhibit quasi-uniform heat conduction. To do so, they use an infrared camera to detect heat in experimental samples placed between a hot and cold bath. These results confirm their own equations predicting the thermal conductivity of the periodic material.

To achieve the desired thermal illusion, they rely on quasi-uniform heat conduction. Instead of producing an omnidirectional illusion, showing objects with the same temperature signature regardless of the angle of observation, the authors introduce what they refer to as the Janus thermal illusion. It features an object whose heat is not detectable from one direction, thus forming an invisible illusion. By contrast, it features a different heat signature than its actual signature along the vertical axis, thus forming a different type of illusion, which is visible but not displaying the reality.

To remove the influence of thermal convection and radiation from their experimental results, the authors also perform simulations. These in turn help to develop the concept of 'illusion thermal diodes', which approach thermal illusion as an additional degree of freedom for heat management. Ultimately, these diodes could be applied in fields that require both thermal camouflage and thermal rectification.
-end-
Reference: L. Xu, C. Jiang, J. Shang, R. Wang and J. Huang (2017), Periodic composites: Quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes, European Physical Journal B 90: 221, DOI: 10.1140/epjb/e2017-80524-6

Springer

Related Thermal Conductivity Articles from Brightsurf:

Clemson researchers decode thermal conductivity with light
Clemson researchers examine a highly efficient thermoelectric material in a new way - by using light.

Collaboration sparks new model for ceramic conductivity
As insulators, metal oxides - also known as ceramics - may not seem like obvious candidates for electrical conductivity.

Topology-optimized thermal cloak-concentrator
Cloaking a concentrator in thermal conduction via topology optimization. A simultaneous cloaking and concentrating of heat flux is achieved through topology optimization, a computational structural design methodology.

Investigating a thermal challenge for MOFs
New research led by an interdisciplinary team across six universities examines heat transfer in MOFs and the role it plays when MOFs are used for storing fuel.

Thermal manipulation of plasmons in atomically thin films
Nanoscale photothermal effects can induce substantial changes in the optical response experienced by the probing light, thus suggesting their applications in all-optical light modulation.

Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.

Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.

Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.

Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.

Read More: Thermal Conductivity News and Thermal Conductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.