Nav: Home

Russian scientists developed a new drug for cancer diagnostics and treatment

December 04, 2018

Russian researchers announced the development of a combined action drug based on ionizing radiation and bacterial toxin. Their total effect appeared to be 2,200 times stronger compared to that exerted by the radiation and toxin, separately. The drug affects tumor cells selectively providing better diagnostics and treatment of malignant tumors. These advances were reported in an article published in the Proceedings of the National Academy of Sciences.

Chemotherapy is widely used for treatment of cancerous diseases. However, it is associated with severe side effects (hair loss, nausea, loss of appetite, oedema, anemia, memory disorders, and so on) as the drugs affect the body in total and are accumulated throughout normal tissues. Moreover, the chemotherapy often requires repeated drug administration to overcome tumor propensity to relapse. A perfect anti-cancer drug should provide a powerful impact to all tumor cells at once to prevent their recovery.

The combined therapy proposed and realised by the Russian scientists appeared to be successful. "Just like modern armies deploy tanks, foot troops, and artillery, we also fight tumors using several mechanisms at once: ionising radiation and a strong toxin of bacterial origin," says Andrey Zvyagin, head of the Department of Biomedical Engineering at the Institute of Molecular Medicine, Sechenov University.

The drug developed by the scientists consists of a nanoparticles, as the core, with embedded radiopharmaceutical agent (a source of ionising beta-radiation), and a highly toxic toxin derived from bacterium Pseudomonas aeruginosa. The nanosized drug core is decorated with polymer to render the nanocomplex water miscible and biologically amiable and coupled with biological molecules, which represent the toxin fused with a targeting biomolecule by genetic engineering methods. The radiopharmaceutical agent is well secluded inside the nanoparticle and guarantees its side-effect-free targeted action to tumor cells. Blood vessels that feed the tumor have pores through which the drug enters the tumor from the blood flow. The targeting biomolecule binds itself with cancer cells causing them to accumulate in the primary and metastatic tumors. The radiopharmaceutical agent is able to affect the cells both in immediate proximity to the nanoparticles and up to 1 cm from them, providing for efficient therapy of considerable tumor masses. The toxin blocks the synthesis of proteins in the cells preventing them from restoration and dissemination.

The new drug was tested both on cells and laboratory animals: breast cancer (the most widely spread type of cancer in women) was grafted on a laboratory mouse, and after that the tested drug was administered to it. In experiments on cells, the effect of the combination was 2,200 times stronger than the effect from the separate use of its components. The efficiency of combined therapy was confirmed by experiments on laboratory mice. The drug not only treats, but also facilitates visualisation of the tumors, which makes it a diagnostical tool. The area of medicine that combines diagnostics and treatment is called theranostics.
-end-
The work was carried out together with scientists from N.I. Lobachevsky State University of Nizhny Novgorod, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, a company "Amplituda Science and Technology Center", and other research groups. The whole work, from the idea to the publishing of the article, was carried out in Russia.

Sechenov University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".