The 'wrong' connective tissue cells signal worse prognosis for breast cancer patients

December 04, 2018

In certain forms of cancer, connective tissue forms around and within the tumour. One previously unproven theory is that there are several different types of connective tissue cells with different functions, which affect the development of the tumour in different ways. Now, a research team at Lund University in Sweden has identified three different types of connective tissue cells. In studies of breast cancer patients, the team found that two of these are linked to a worse prognosis.

Cancer arises as a result of mutations and other genetic changes that shut down the control systems for growth that are normally present in our cells. New studies, however, emphasise the importance of the cancer cells' communication with various cell types in the surrounding tissue, such as connective tissue, blood vessels and immune cells, in allowing the tumour to form, spread and resist treatment.

During the development of certain types of cancer, e.g. in the breast, liver and pancreas, the formation of connective tissue around and in the tumour is stimulated. However, researchers have not understood how the connective tissue affects tumour growth. Previous studies support the theory that it either drives the spread of the tumour by stimulating the formation of blood vessels, or that it weakens the immune system. However, inhibiting effects have also been studied, which could mean that the connective tissue encapsulates the tumour, thereby preventing it from spreading.

"We have investigated the pattern of gene expression in the connective tissue cells - known as fibroblasts - with a sensitive technique that enables the analysis of one cell at a time. By seeing which genes are active in 768 individual connective tissue cells from a mouse model of breast cancer, we were able to identify three different subgroups of fibroblasts which differ in function and origin", says Kristian Pietras, research team leader at Lund University.

The largest group of connective tissue cells identified by the researchers controls the development of blood vessels; these cells are known as vascular fibroblasts. A second group of connective tissue cells has the task of producing connective tissue proteins that make the tumour stable and facilitate the migration of cells. These cells are called matrix fibroblasts and have been "kidnapped" by the tumour from the normal breast tissue as the tumour grows over them and converts them into helping. Finally, the researchers found a third group of cells, that are actually tumour cells that have disguised themselves as connective tissue cells.

"It is a well-known fact that tumour cells must undergo a transformation to acquire more connective tissue-like properties in order to be able to spread in the body - a process known as epithelial-mesenchymal transition. We were able to follow how, step by step, the malignant cells start to invade surrounding tissue. However, more detailed studies are needed to follow their journey all the way to a metastatic tumour in another organ", says Michael Bartoschek, who is the principal author of the study.

Through precise tissue analyses, the researchers were able to confirm that the three types of fibroblasts are separate cell types which co-exist within different kinds of tumours. When they investigated the significance of the various subgroups of connective tissue cells for breast cancer prognosis, using tissue samples, they found that patients with large numbers of vascular fibroblasts or matrix fibroblasts in their tumours had a worse prognosis, as both these cell types affect the development of metastases.

Successful attempts to impede tumour cell communication with surrounding tissue through drugs already exist, but more research is required to find better treatment strategies targeting tumour cell communication, according to the researchers behind the study. The study confirms the old hypothesis that tumours have several different types of connective tissue cells, with different origins. The current findings open up the possibility of developing drugs that shut down specific functions in subgroups of connective tissue cells in order to achieve better therapeutic results with fewer side effects in breast cancer patients.

"We are convinced that more knowledge of the cellular structure of tumours and the function of communication between different cell types will enable us to find new ways to treat tumour diseases. In addition, measurements of the number of different connective tissue cells within a tumour can be developed to assess the risk of cancer recurrence in patients", concludes Kristian Pietras.
-end-


Lund University

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.