Promising research shows blood vessel growth key to healthy fat tissue

December 04, 2018

TORONTO, Dec. 4, 2018 - New research led by York University's Faculty of Health shows that inhibiting a protein within blood vessels stimulates new blood vessel growth, resulting in healthier fat tissue (adipose) and lower blood sugar levels. The findings provide key insight into how improving blood vessel growth could help to mitigate serious health problems that arise with obesity, such as diabetes.

Tara Haas, a professor in the School of Kinesiology & Health Science at York University, and a team including first author Martina Rudnicki, a post-doctoral fellow in the Haas lab, investigated a process of the vascular system called angiogenesis. Angiogenesis is the formation of tiny blood vessels called capillaries. It helps to maintain normal healthy functions in tissue, particularly when that tissue enlarges. However, when the tissue expands as it stores excess fat, angiogenesis is repressed and new capillaries fail to grow. This results in unhealthy adipose tissue, which increases the risk of developing diabetes and cardiovascular diseases. "It is not clear why exactly new capillaries fail to form in obesity," says Haas.

Previous research led by Haas found that in obesity, the levels of FoxO1 increase in endothelial cells, which are the main cells that comprise capillaries. "What we know is that a protein called FoxO1 is present in the cells that line the inside of blood vessels, and that it can stop the development of new capillaries. FoxO1 controls how cells spend their energy and it can force them to go into a resting state. During obesity, the levels of FoxO1 increase in capillary endothelial cells. Therefore, it may be possible that FoxO1 prevents new blood vessels from growing in the fat tissues of obese individuals," says Haas.

In the study published today in the online journal ELife, the research team, which also included York Professors Emilie Roudier, Rolando Ceddia and Christopher Perry, investigated whether inhibiting FoxO1 protein would stimulate adipose angiogenesis.

The team inhibited the production of FoxO1 protein and monitored the behaviour of capillary endothelial cells and the resultant influences of these changes on the expansion of adipose tissue. The study found that lowering FoxO1 levels promoted angiogenesis and caused a healthier adipose tissue - in particular, with a high-fat diet. Lower levels of endothelial cell FoxO1 also led to an increase in the use of glucose, and less weight gain, despite consuming a diet high in fat.

"While we anticipated that improving angiogenesis in adipose tissue would make the adipose healthier, we were surprised that altering the levels of a particular protein, FoxO, in endothelial cells exerted such a broad influence on whole-body glucose levels and weight gain. This led us to propose the novel concept that the activity of endothelial cells can alter whole-body energy balance."

Haas said the research showed that removing FoxO1 made endothelial cells 'hyper-active,' and that this enabled the formation of a lot of new blood vessels in the fat tissue. At the same time, these blood vessels consumed a lot of energy, and this in fact could alleviate common health problems that accompany obesity, such as high levels of blood glucose and circulating fats, which are risk factors for diabetes and cardiovascular disease.

More research is needed, Haas says, to investigate the optimal way to target these cellular processes to obtain positive health outcomes.
-end-
York University champions new ways of thinking that drive teaching and research excellence. Through cross-disciplinary programming, innovative course design, diverse experiential learning and a supportive community environment, our students receive the education they need to create big ideas that make an impact on the world. Located in Toronto, York is the third largest university in Canada, with a strong community of 53,000 students, 7,000 faculty and administrative staff, and more than 300,000 alumni. York U's fully bilingual Glendon Campus is home to Southern Ontario's Centre of Excellence for French Language and Bilingual Postsecondary Education.

Media Contact: Anjum Nayyar, York University Media Relations, 416-736-2100 ext. 44543, anayyar@yorku.ca

York University

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.