Is the pancreas regeneration debate settled? An original theory renewed

December 04, 2018

A contentious debate among diabetes researchers has surrounded the regeneration of pancreatic insulin-producing cells: not if these cells regenerate, but rather how.

The long-held view that the islets of Langerhans can be replenished from pancreatic stem cells (progenitors) was replaced over the last decade by the notion that islets self-duplicate from existing cells. Now, in a manuscript published online in Trends in Endocrinology & Metabolism, scientists from the Diabetes Research Institute at the University of Miami draw categorical conclusions in support of the original theory that progenitors in the pancreas do exist and, moreover, that these stem cells may regenerate in human patients. The ability to regrow a person's own insulin-producing cells would address a major challenge in type 1 diabetes and represent a significant step toward developing a biological cure for this life-threatening disease.

"We have demonstrated that there are progenitors in the adult pancreas, not only in mice but in humans, which is a very important clarification, and that those cells can potentially be stimulated through pharmacological means to induce regeneration in patients with type 1 diabetes. That is the 'Holy Grail' of what we are trying to achieve here at the DRI," said Juan Dominguez-Bendala, Ph.D., director of pancreatic stem cell development for translational research and co-author of the paper with Ricardo Pastori, Ph.D., director of molecular biology.

Flawed Techniques Shift the Hypothesis

In the 1980s, researchers logically concluded that the pancreas harbors progenitor cells capable of regenerating endocrine (insulin-producing) cells after an islet was photographed sprouting from an adult pancreatic duct. Over the three decades that followed, dozens of reports further reinforced the idea that a variety of growth factors could stimulate ductal cells to differentiate into all pancreatic cell types, including insulin-producing cells.

That long-standing view was challenged in 2004, when tests using lineage tracing (LT), a technique that tracks the origin of a cell's development, performed in mice, showed that the insulin-producing cells were replenished by replication of existing cells, rather than from the growth of new ones. While the study did not disprove the existence of progenitor cells, it succeeded in shifting the prevailing thought in the scientific community.

According to the DRI team, however, those conclusions were largely derived using an unreliable tool in an inadequate model. Striking differences between islets of mice and humans are not simply a matter of scale. There are vast anatomic and functional differences between the islets of these two species that call into question the validity of the mouse model to draw conclusions about pancreatic regeneration in humans.

The use of lineage tracing in rodents has also yielded contradictory results. While LT is a powerful tool that has been used for several decades to track the path and origins of stem-cell maturation, it has a number of limitations and carries a potential bias in scientific outcomes.

"The hypothesis that the pancreas harbors progenitor cells has been discredited for a number of years, but we believe that many of the techniques used to reach that conclusion were flawed. We have found profound differences in the behavior of human cells vs. mouse cells in the pancreas and we think it's important to highlight and emphasize the regeneration processes in human cells," said Dr. Dominguez-Bendala. "Clearly, our work and the work of others is actually contributing to the notion that we have stem cells in the adult pancreas, and that we can potentially exploit those cells to our benefit for the treatment of type 1 diabetes."

Harnessing the Body's Ability to Heal Itself

Type 1 diabetes is an autoimmune condition in which the insulin-producing cells of the pancreas have been mistakenly destroyed by the immune system, requiring patients to manage their blood sugar levels through a daily regimen of insulin therapy. Islet transplantation has allowed some patients with type 1 diabetes to live without the need for insulin injections after receiving infusions of donor cells. However, there are not enough cells to treat the millions of patients who can benefit. Thus far, research efforts have focused primarily on creating more pancreatic cells for transplant from sources like embryonic (hESc), pluripotent (hPSc) and adult stem cells, and porcine (pig) islets, among others. A more efficient and potentially safer solution could lie in regenerating a patient's own insulin-producing cells, sidestepping the need to transplant donor tissue altogether and eliminating other immune-related roadblocks.

"If we could give the patient something that will promote the proliferation and subsequent differentiation of those cells that are already in the pancreas into beta cells while controlling autoimmunity, we could harness the natural ability of the body to heal itself. We think that would open a whole new therapeutic horizon," said Dr. Dominguez-Bendala.
-end-
About the Diabetes Research Institute

The Diabetes Research Institute at the University of Miami Miller School of Medicine leads the world in cure-focused research. As one of the largest and most comprehensive research centers dedicated to curing diabetes, the DRI is aggressively working to develop a biological cure by restoring natural insulin production and normalizing blood sugar levels without imposing other risks. Researchers have already shown that transplanted islet cells allow patients to live without the need for insulin therapy. Some study participants have maintained insulin independence for more than 10 years. The DRI is now building upon these promising outcomes through its BioHub strategy, a multidisciplinary, three-pronged approach for addressing the major challenges that stand in the way of a cure: eliminate the need for anti-rejection drugs, reset the immune system to block autoimmunity, and develop an unlimited supply of insulin-producing cells. For more information, please visit DiabetesResearch.org, call 800-321-3437, or Tweet @Diabetes_DRI.

Diabetes Research Institute Foundation

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.