Nav: Home

Scientists consider climate change-resistant crops

December 04, 2018

When it gets hot outside, humans and animals have the luxury of seeking shelter in the shade or cool, air-conditioned buildings. But plants are stuck.

While not immune to changing climate, plants respond to the rising mercury in different ways. Temperature affects the distribution of plants around the planet. It also affects the flowering time, crop yield, and even resistance to disease.

"It is important to understand how plants respond to temperature to predict not only future food availability but also develop new technologies to help plants cope with increasing temperature," said Meng Chen, Ph.D., associate professor of cell biology at the University of California, Riverside.

Scientists are keenly interested in figuring out how plants experience temperature during the day, but until recently this mechanism has remained elusive. Chen is leading a team to explore the role of phytochrome B, a molecular signaling pathway that may play a pivotal role in how plants respond to temperature.

In a paper published in Nature Communications, Chen and colleagues at UCR describe the genetic triggers that prepare plants for growth under different temperature conditions using the model plant, Arabidopsis.

Plants grow following the circadian clock, which is controlled by the seasons. All of a plant's physiological processes are partitioned to occur at specific times of day.

According to Chen, the longstanding theory held that Arabidopsis senses an increase in temperature during the evening. In a natural situation, Arabidopsis, a winter plant, would probably never see higher temperature at night.

"This has always been puzzling to us," said Chen, senior author on the paper. "Our understanding of the phytochrome signaling pathway is that it should also sense temperature during the daytime, when the plant would actually encounter higher temperature."

In fact, Arabidopsis grows at different times of day as the seasons change. In the summer, the plant grows during the day, but during the winter it grows at night. Previous experiments that mimicked winter conditions showed a dramatic response in phytochrome B, but experiments that mimicked summer conditions were less robust.

Chen and his team decided to examine the role of phytochrome B in Arabidopsis at 21 degrees Celsius and 27 degrees Celsius under red light. The monochromatic wavelength allowed the team to study how this particular plant sensor functions without interference from other wavelengths of light.

"Under these conditions, we see a robust response," Chen said. "The work shows that phytochrome B is a temperature sensor during the day in the summer. Without this photoreceptor, the response in plants is significantly reduced."

Beyond identifying the function of phytochrome B, Chen's work also points to the role of HEMERA, a transcription activator that turns on the temperature-responsive genes that control plant growth.

"We found the master control for temperature sensing in plants," Chen said. "HEMERA is conserved in all plants, from moss to flowering plants."

In essence, Chen and his team identified the genetic mechanism used by all plants as they respond to daylight conditions as well as the ability to sense temperature.

Chen acknowledges that not all plants may respond in the same way as Arabidopsis in this study. Before this research could be applied, it may be necessary to understand how this temperature-signaling pathway behaves in different plant systems. Chen believes the pathway is probably similar for all plants and may only require minor modifications.

The research team hopes to expand on this study by adding more complexity to future experimental designs, such as exploring the response of the signaling pathway under white light or diurnal conditions. Chen would also like to examine how other plant systems use HEMERA to experience temperature.

"To cope with rapid temperature changes associated with global warming, we may have to help nature to evolve crops to adapt to the new environment," Chen said. "This will require a molecular understanding of how plants sense and respond to temperature."
-end-
The paper, titled "Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA," was published in the December issue of Nature Communications. In addition to Chen, collaborators at UC Riverside include: Yongjian Qiu, Meina Li, Ruth Jean-Ae Kim, and Carisha M. Moore. The study was funded by the National Institute of General Medical Sciences.

University of California - Riverside

Related Global Warming Articles:

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.
Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.
Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.
Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.
Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.
Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.
Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.
Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.
Global fisheries could still become more profitable despite global warming
Global commercial fish stocks could provide more food and profits in the future, despite warming seas, if adaptive management practices are implemented.
More Global Warming News and Global Warming Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.