Nav: Home

Water was a winner in capturing CO2

December 04, 2019

Climate worries go hand in hand with CO2 emissions concerns. Emissions hit an all-time high last year. The CO2 level in the atmosphere may be higher than it's been in 3 million years.

Carbon capture will most likely be necessary to reduce the level of CO2 in the atmosphere. To accomplish that, we need the technology and materials to do the job. Recently a promising and surprising new candidate has emerged.

"The results are first and foremost important in terms of climate change," says Professor Liyuan Deng at the Norwegian University of Science and Technology's (NTNU) Department of Chemical Engineering.

Professor Deng is leading the work of the membrane research group at NTNU, and their results are gaining attention.

Power plants that use fossil fuels require a membrane that can filter the emissions and separate out the carbon. These membranes need to be both permeable for CO2 and also separate the CO2 from the other gases, such as nitrogen.

"We didn't think this membrane material was going to be suitable," says Deng.

But a simple move changed that. The hopeless membrane candidate needed another substance to work properly. This second substance was simply - water.

By lowering the membrane into water and then drying it out again, the membrane underwent a change. CO2 penetrated the membrane much more efficiently, and the membrane was somewhat better at filtering out nitrogen.

NPG Asia Materials, a journal in the Nature group, recently published an article on the NTNU research. The authors wrote that "these nanostructured membranes constitute promising candidates for gas separation technologies aimed at CO2 capture."

TESET

The material in question is a polymer. Polymers are relatively inexpensive and easy to make. Many researchers therefore regard them as promising candidates for separating different gases on the large scale that will be needed to cope with climate change. The membranes must also be stable and durable.

A polymer is a substance composed of long-chain molecules. Many plastics are polymers, but they are also found in nature as proteins, cellulose and glass, for example.

This particular polymer bears the name poly[tert-butylstyrene-b-(ethylene-alt-propylene)-b-(styrene-r-styrenesulfonate)-b-(ethylene-alt-propylene)-b-tert-butylstyrene].

Fortunately, someone gave it the nickname TESET instead. The material is already in commercial use and is therefore readily available.

"The company holding the patent is interested in this new field of application," says Deng.

The Membrane Research Laboratory at NTNU hosts the only group in Norway that is studying membranes from polymers that can be used to filter CO2 from the air. Some individual scientists are working with the same materials, while other groups are looking at inorganic membranes. The research on membranes in Norway as a whole is quite advanced, and perhaps even cutting edge, according to the professor.

This particular research is part of Horizon 2020, the EU's Framework Programme for Research and Innovation.

The group is also working on other promising candidates for CO2 filtration. Among these are membranes made of graphene oxide. Graphene is the world's thinnest and strongest material. It consists of one layer of carbon atoms organized in a hexagonal pattern. The material has many exciting properties, and several groups at NTNU are looking at the practical fields of application for it.

All the published results and articles from the membrane research group associated with Horizon 2020 are freely accessible for the public, and the Trondheim laboratory is open to researchers from around the world to carry out experiments, as long as they receive permission and support from the EU ECCSEL project.
-end-
Reference: Dai, Z., Deng, J., Aboukeila, H. et al. Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water. NPG Asia Mater 11, 53 (2019) doi:10.1038/s41427-019-0155-5

Norwegian University of Science and Technology

Related Climate Change Articles:

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
More Climate Change News and Climate Change Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab