Nav: Home

Better wildfire and smoke predictions with new vegetation database

December 04, 2019

It's hard to find a place in the U.S. that isn't impacted by wildfires and smoke.

Dry landscapes, warmer temperatures and more development near forested areas all contribute to massive wildfires across North America each year. Smoke and haze from these fires can travel hundreds of miles from their source, affecting the health and wellbeing of communities across the U.S.

Given these impacts, scientists rely on models that try to predict the severity of wildfires and smoke. The amount of living and dead vegetation on a landscape, known as fuels, is a key part of the equation when modeling wildfire and smoke behavior. But in many areas, fuel estimates are imprecise, leading to unreliable smoke and fire forecasts -- potentially endangering communities.

Researchers from the University of Washington and Michigan Technological University have created the first comprehensive database of all the wildfire fuels that have been measured across North America. Called the North American Wildland Fuel Database, the tool incorporates the best available measurements of vegetation in specific locations, and allows fire managers to see where information about fuels is missing altogether.

Ultimately, it can help scientists make more informed decisions about fire and smoke situations.

"Where there are fuels and fire, there's smoke," said lead author Susan Prichard, a research scientist at the UW School of Environmental and Forest Sciences. "This database is informing more realistic predictions of smoke that allow for the fact that we might not have dialed in the fuels perfectly."

The new database is described in a paper published Dec. 4 in the Journal of Geophysical Research - Biogeosciences.

There are many types of vegetation that burn during wildfires, including live and dead trees, freshly fallen leaves and needles, shrubs, grasses, moss -- and even decomposing logs and soil. The database, which includes a map view, shows a breakdown of each type of wildfire fuel and its amount in various locations across the U.S. It provides, for example, a quick way to see that dead trees are more densely packed along the West Coast, while decomposing materials, called "duff," are more prevalent along the East Coast and upper Midwest.

The amount of vegetation in a particular area can vary drastically by season and natural events like windstorms that blow down trees, or wildfires that burn up fuels on the ground. As a result, the researchers found that it takes a wide range of observations to encompass the natural variability that is common within vegetation on a landscape.

Their dataset incorporates all of the existing information about fuels across the country -- drawn from other datasets and published studies -- and also factors in the potential range of variability for each vegetation type in different locations.

"Setting a static map of fuels is not going to be an accurate depiction of what the vegetation will be like in that location forever," said co-author Maureen Kennedy, an assistant professor at UW Tacoma. "It was important to us to find ways to communicate that fuels on the landscape are variable and have uncertainty."

The researchers hope that smoke modelers and fire managers use this data to analyze the range of wildfire fuels in their location, and use it to make better predictions about smoke emissions and fire severity. All of the data is accessible and downloadable from their website.

Managers also could use this data when deciding where and when to do a prescribed burn, which is important for reducing fire hazard in dense forests. More accurate fuels information will help determine if smoke and other pollutants will be too high or within a safe range for surrounding communities during a burn.

The team also hopes to add more data as other researchers continue to take measurements of the fuels in their areas. Data on live and dead trees is robust because of satellite imagery, Prichard explained, but data on fuels that must be measured by hand, such as leaves, needles and small branches, are largely missing. Fuels all burn differently -- some smolder while others ignite quickly -- which can also impact the accuracy of smoke and fire predictions.

"One of the things we didn't anticipate is that the database would also let us know what still needs to be done," Prichard said. "The big surprise for all of us is how little data we have on non-forest vegetation such as grasslands and shrublands. That data gap is big and worth closing over time."
-end-
Other co-authors are Anne Andreu and Paige Eagle, research scientists at the UW School of Environmental and Forest Sciences, and Nancy French and Michael Billmire of Michigan Technological University.

This research was funded by the Joint Fire Science Program and the U.S. Forest Service Pacific Northwest Research Station.

For more information, contact Prichard at sprich@uw.edu and Kennedy at mkenn@uw.edu.

Photos, animations available for download: https://drive.google.com/drive/folders/1zPIV7B5CGQQFE2zQAEwcBujkQsAy-yYk?usp=sharing (If link doesn't work, copy and paste into a browser)

View the database: https://fuels.mtri.org/home

University of Washington

Related Wildfires Articles:

Wildfires cause bird songs to change
A new study in The Auk: Ornithological Advances suggests that wildfires change the types of songs sung by birds living in nearby forests.
Recent Australian wildfires made worse by logging
Logging of native forests increases the risk and severity of fire and likely had a profound effect on the recent, catastrophic Australian bushfires, according to new research.
Study synthesizes what climate change means for Northwest wildfires
A synthesis study looks at how climate change will affect the risk of wildfires in Washington, Oregon, Idaho and western Montana.
Climate change increases the risk of wildfires confirms new review
Human-induced climate change promotes the conditions on which wildfires depend, increasing their likelihood -- according to a review of research on global climate change and wildfire risk published today.
Fire blankets can protect buildings from wildfires
Wrapping a building in a fire-protective blanket is a viable way of protecting it against wildfires, finds the first study to scientifically assess this method of defense.
Stanford researchers have developed a gel-like fluid to prevent wildfires
Scientists and engineers worked with state and local agencies to develop and test a long-lasting, environmentally benign fire-retarding material.
UCI team uses machine learning to help tell which wildfires will burn out of control
An interdisciplinary team of scientists at the University of California, Irvine has developed a new technique for predicting the final size of a wildfire from the moment of ignition.
New wildfire models to predict how wildfires will burn in next 20 minutes
While it's impossible to predict just where the next wildfire will start, new Department of Defense-sponsored research from BYU's Fire Research Lab is getting into the microscopic details of how fires initiate to provide more insight into how wildfires burn through wildland fuels.
Tiny airborne particles from wildfires have climate change implications
Wildfires are widespread across the globe. They occur in places wherever plants are abundant -- such as the raging fires currently burning in the Brazilian Amazon.
How California wildfires can impact water availability
A new study by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) uses a numerical model of an important watershed in California to shed light on how wildfires can affect large-scale hydrological processes, such as stream flow, groundwater levels, and snowpack and snowmelt.
More Wildfires News and Wildfires Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.