Nav: Home

Chip-based optical sensor detects cancer biomarker in urine

December 04, 2019

WASHINGTON -- For the first time, researchers have used a chip-based sensor with an integrated laser to detect very low levels of a cancer protein biomarker in a urine sample. The new technology is more sensitive than other designs and could lead to non-invasive and inexpensive ways to detect molecules that indicate the presence or progression of a disease.

"Current methods to measure biomarker levels are expensive and sophisticated, requiring biopsies and analysis in specialized laboratories," said research team leader Sonia M. Garcia-Blanco from the University of Twente in the Netherlands. "The new technology we developed paves the way to faster and ultra-sensitive detection of panels of biomarkers that will permit doctors to make timely decisions that improve personalized diagnosis and treatment of medical conditions including cancer."

In The Optical Society (OSA) journal Optics Letters, a multi-institutional group of researchers funded by the H2020 European project GLAM (Glass multiplexed biosensor), shows that the new sensor can perform label-free detection of S100A4, a protein associated with human tumor development, at levels that are clinically relevant.

"The biosensor could enable point-of-care devices that simultaneously screen for various diseases," said Garcia-Blanco. "Its operation is simple and does not require complicated sample treatments or sensor operation, making it an excellent candidate for clinical applications."

The researchers say that the sensor holds potential for non-biomedical applications, as well. For example, it can also be used to detect different types of gases or liquid mixtures.

Creating a high-sensitivity sensor

The new chip-based sensor detects the presence of specific molecules by illuminating the sample with light from an on-chip microdisk laser. When the light interacts with the biomarker of interest the color, or frequency, of this laser light shifts in a detectable way.

To perform detection in urine samples, the researchers had to figure out how to integrate a laser that could operate in a liquid environment. They turned to the photonic material aluminum oxide, because when doped with ytterbium ions it can be used to fabricate a laser that emits in a wavelength range outside the light absorption band of water while still enabling the precise detection of the biomarkers.

"Although sensors based on monitoring frequency shifts of lasers already exist, they often come in geometries that are not easily integrated on small, disposable photonic chips," said Garcia-Blanco. "Aluminum oxide can easily be fabricated monolithically on-chip and is compatible with standard electronic fabrication procedures. This means that the sensors can be produced on a large, industrial scale."

Using a microdisk laser rather than the non-lasing ring resonators used in other similar sensors opens the door to unprecedented sensitivity. The sensitivity comes from the fact that the lasing linewidth is much narrower than the resonances of passive ring resonators. Once other noise sources, such as thermal noise, are eliminated, this method will allow the detection of very small frequency shifts from biomarkers at very low concentrations.

Detecting minute biomarker concentrations

After developing and applying a surface treatment that captures the biomarkers of interest in complex liquids such as urine, the researchers tested the new sensor with synthetic urine containing known biomarker levels. They were able to detect S100A4 at concentrations as low as 300 picomolar.

"Detection in this concentration range shows the potential of the platform for label-free biosensing," said Garcia-Blanco. "Furthermore, the detection module can be potentially made very simple using the developed technology, bringing it a step closer to the final application outside of the laboratory."

The researchers are working to incorporate all the relevant optical sources and signal generation components onto the chip to make the device even simpler to operate. They also want to develop various coatings that could allow parallel detection of a large variety of biomarkers.
-end-
Paper: M. De Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitijans, S. M. Garcia-Blanco, "Al2O3:Yb3+ integrated microdisk laser label-free biosensor," Opt. Lett., 44, 24, 5937-5940 (2019).

DOI: https://doi.org/10.1364/OL.44.005937.

About Optics LettersOptics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Xi-Cheng Zhang, University of Rochester, USA, Optics Letters is available online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:

mediarelations@osa.org

The Optical Society

Related Biomarkers Articles:

Deep biomarkers of aging and longevity: From research to applications
The deep age predictors can help advance aging research by establishing causal relationships in nonlinear systems.
Semen miRNAs could be non-invasive biomarkers for prostate cancer
Researchers of the Human Molecular Genetics group at the Bellvitge Biomedical Research Institute (IDIBELL), led by Dr.
Scientists have found longevity biomarkers
An international group of scientists studied the effects of 17 different lifespan-extending interventions on gene activity in mice and discovered genetic biomarkers of longevity.
After concussion, biomarkers in the blood may help predict recovery time
A study of high school and college football players suggests that biomarkers in the blood may have potential use in identifying which players are more likely to need a longer recovery time after concussion, according to a study published in the July 3, 2019, online issue of Neurology, the medical journal of the American Academy of Neurology.
3D-printed device detects biomarkers of preterm birth
Preterm birth (PTB) -- defined as birth before the 37th week of gestation -- is the leading complication of pregnancy.
NUS researchers identified new biomarkers associated with 'chemobrain'
Researchers from the National University of Singapore have identified new biomarkers related to the cognitive impairment associated with cancer known as chemobrain.
Novel biomarkers for noninvasive diagnosis of NAFLD-related fibrosis
With an estimated 25% of people worldwide affected by nonalcoholic fatty liver disease (NAFLD), there is a large unmet need for accurate, noninvasive measures to enhance early diagnosis and screening of hepatic fibrosis.
Novel biomarkers & therapeutic targets for atherosclerotic cardiovascular diseases
In this review, the researchers describe the analytical techniques and workflow used in untargeted metabolomics.
Biomarkers facilitate early detection of glaucoma
Researchers at Ruhr-Universität Bochum have identified new potential biomarkers that may facilitate early detection of glaucoma in patients.
New biomarkers of inflammation identified as risk of polyneuropathy
Polyneuropathy is one of the most common complications in people with diabetes.
More Biomarkers News and Biomarkers Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab