Scientists create 'epigenetic couch potato' mouse

December 04, 2019

Why is it that some people love to exercise, and others hate it? Most people would assume it's all due to genetics, but a new Baylor College of Medicine led study in mice shows for the first time that a different molecular level of regulation - epigenetics - plays a key role in determining one's innate drive to exercise. Epigenetics refers to molecular mechanisms that determine which genes are turned on or off in different cell types. Since epigenetic mechanisms are inherently more malleable than genetics, the findings suggest a potential way to help 'program' people to enjoy being more physically active.

Today, in the journal Nature Communications, Baylor researchers and colleagues report the surprising creation of an 'epigenetic couch potato' mouse. They found that in neurons within a part of the brain called the hypothalamus, changes in DNA methylation - the addition of methyl chemical tags in the DNA - have a major impact on levels of voluntary exercise behavior.

"We study developmental programming, which refers to how the environment during development can have a long term impact on risk of disease," said corresponding author, Dr. Robert A. Waterland, professor of pediatrics - nutrition at the USDA/ARS Children's Nutrition Research Center at Baylor and Texas Children's Hospital.

Over the last several years, the researchers studied various mouse models to understand developmental programming of energy balance, that is, the balance of calories consumed vs. those burned off. A prolonged positive energy balance leads to obesity. Remarkably, whether the early environmental influence was fetal growth restriction, infant overnutrition, or maternal exercise during pregnancy, the long-term effect on energy balance was always due to persistent changes in physical activity, not food intake.

"Our earlier findings suggested that establishment of one's physical activity 'set point' can be affected by early environment, and that this may involve epigenetics," said Waterland, who also is a professor of molecular and human genetics and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor.

How the brain regulates the body's energy balance

In the current study, Waterland and his colleagues designed an experiment to directly test whether DNA methylation in the brain affects energy balance. They focused on the hypothalamus, a brain region that plays a central role in energy balance, and in particular, studied a specialized subset of hypothalamic neurons called AgRP neurons, famous for their role in regulating food intake.

The researchers disrupted DNA methylation in AgRP neurons by disabling the Dnmt3a gene. Dnmt3a is responsible for adding methyl groups to DNA, particularly in the brain during early postnatal life. The results showed that, indeed, DNA methylation was dramatically reduced in AgRP neurons of these mice. The investigators then tested whether these animals gained or lost weight when compared to normal mice.

"We expected that interfering with DNA methylation in AgRP neurons would result in major changes in the animals' weight," said Dr. Harry MacKay, a postdoctoral fellow in the Waterland lab and first author of the study. "Somewhat disappointingly, however, the Dnmt3a-deficient mice were only slightly fatter than those that were not deficient."

But when the researchers explored the cause of this change in energy balance, things got more interesting. The team expected to find differences in food intake between normal and Dnmt3a-deficient mice. But there were none. Instead, they found a major difference in spontaneous physical exercise.

The researchers placed running wheels in the animals' cages for eight weeks and measured how much they ran each night. Normal male mice ran about 6 Km (3,7 miles) every night, but the Dnmt3a-deficient mice ran only half as much and, accordingly, lost less fat. Importantly, detailed treadmill studies showed that, although they ran only half as much as normal mice, the Dnmt3a-deficient mice were just as capable of running. They had the ability, but appeared to lack the desire.

"Our findings suggest that epigenetic mechanisms, such as DNA methylation, that are established in the brain during fetal or early postnatal life, play a major role in determining individual propensity for exercise," Waterland said. "Nowadays, as decreases in physical activity contribute to the worldwide obesity epidemic, it is increasingly important to understand how all of this works."
-end-
Other authors contributing to this work include Harry MacKay, C. Anthony Scott, Jack D. Duryea, Maria S. Baker, Eleonora Laritsky, Marta L. Fiorotto, Rui Chen, Yumei Li and Cristian Coarfa (Baylor College of Medicine); Amanda E. Elson and Richard B. Simerly (Vanderbilt University) and Theodore Garland Jr. (University of California at Riverside).

This work was supported by grants from the U.S. Department of Agriculture (CRIS 3092-5-001-059) and the National Institutes of Health (NIH) (5R01DK111831). Next generation sequencing was conducted at Baylor College of Medicine Functional Genomics Core, which is partially supported by the NIH shared instrument grant S10OD023469.

Baylor College of Medicine

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.