A week in the dark rewires brain cell networks and changes hearing in adult mice

December 04, 2019

Scientists have known that depriving adult mice of vision can increase the sensitivity of individual neurons in the part of the brain devoted to hearing. New research from biologists at the University of Maryland revealed that sight deprivation also changes the way brain cells interact with one another, altering neuronal networks and shifting the mice's sensitivity to different frequencies. The research was published in the November 11, 2019 issue of the journal eNeuro.

"This study reinforces what we are learning about how manipulating vision can have a significant effect on the ability of an animal to hear long after the window for auditory learning was thought to have closed," said Patrick Kanold, professor of biology at UMD and senior author of the study.

It was once thought that the sensory regions of the brain were not adaptable after a critical period in childhood. This is why children learn languages much more readily than adults. Kanold's earlier research disproved this idea by showing that depriving adult mice of vision for a short period increased the sensitivity of individual neurons in the auditory cortex, which is devoted to hearing.

The current study expands on that earlier work. Kanold and his team investigated how exposure to darkness affects the way groups of neurons in the auditory cortex work together in response to a given sound--which neurons are connected and which fire more powerfully or faster. The researchers placed adult mice in a dark space for one week and then played 17 different tones while measuring brain activity in the auditory cortex. Based on their earlier work, Kanold and his team expected to see changes in the neural networks, but they were surprised to find that groups of neurons changed in different ways.

Young brains wire themselves according to the sounds they hear frequently, allocating areas of the auditory cortex for specific frequencies based on what they are used to hearing. The researchers found that, in adult mice, a week in the dark also redistributed the allocation of space to different frequencies. In the areas of the auditory cortex they examined, the researchers saw an increase in the proportion of neurons that were sensitive to high and low frequencies and a decrease in proportion of neurons that were sensitive to mid-range frequencies.

"We don't know why we are seeing these patterns," Kanold said. "We speculate that it may have to do with what the mice are paying attention to while they are in the dark. Maybe they pay attention to the noises or voices from the other mice, or maybe they're paying more attention to the footsteps they are making."

Kanold said his next steps include manipulating the sounds the mice are exposed to during the darkness phase of the experiment and monitoring brain activity to determine what aspects of their soundscape the mice are listening to. This will help the researchers understand the role of focus and attention in promoting change to the auditory neurons. Such information could be very useful in helping people adapt to cochlear implants or hearing aids.
-end-
Other authors of the study from UMD include biological sciences graduate student Zac Bowen, biophysics graduate student Ji Liu, and alumna Krystyna Solarana (Ph.D. '16, neuroscience and cognitive science) now at USAID.

The paper "Temporary visual deprivation causes decorrelation of spatio-temporal population responses in adult mouse auditory cortex," Krystyna Solarana, Ji Liu, Zac Bowen, Hey-Kyoung Lee and Patrick O. Kanold was published in the November 19, 2019 issue of eNeuro. This work was supported by the National Institutes of Health (Award Nos. R01EY022720 and T32DC000046).

The content of this article does not necessarily reflect the views of this organization.

Media Relations Contact: Kimbra Cutlip, 301-405-9463, kcutlip@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, Md. 20742
http://www.cmns.umd.edu @UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.

University of Maryland

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.