Nav: Home

Closest-ever approach to the sun gives new insights into the solar wind

December 04, 2019

The Parker Solar Probe spacecraft, which has flown closer to the Sun than any mission before, has found new evidence of the origins of the solar wind.

NASA's Parker Solar Probe was launched in August 2018. Its first results are published today in a series of four papers in Nature, with Imperial College London scientists among those interpreting some of the key data to reveal how the solar wind is accelerated away from the surface of the Sun.

The solar wind is a stream of charged particles released by the Sun that fills our Solar System. It is responsible for the North and Southern lights, but can also cause disruption during violent episodes like solar flares and coronal mass ejections, knocking out power grids and satellites.

Now, an international team have shown that bursty 'spikes' of solar wind originate in holes in the Sun's outer atmosphere near its equator, and are accelerated by magnetic phenomena as they flow away into deep space and past the Earth.

The new research suggests that the spikes are generated by 'magnetic reconnection' near the Sun, a process that pulls on the tense lines of the Sun's magnetic field creates folds or 'switchbacks'. These events last only a couple of minutes but release lots of energy, accelerating the solar wind away in long tubes that are approximately the diameter of the Earth.

The finding builds on data from the HELIOS missions, launched in the 1970s, the previous record-holders for the closest approach to the Sun.

Professor Tim Horbury from Imperial's Department of Physics is a co-investigator on Parker Solar Probe's FIELDS instrument, which is led by the University of California, Berkeley. He said: "From HELIOS data we could see what might be 'spikes' of faster solar wind, and now we have been able to confirm their existence in striking detail with Parker Solar Probe.

"We usually think of the fast solar wind as very smooth, but Parker Solar Probe saw surprisingly slow wind with a large number of these little bursts and jets of plasma, creating long tubes of fast wind containing plasma with around twice the energy of the background solar wind."

Parker Solar Probe is studying the Sun's outer atmosphere, called the corona, directly flying through it to better understand the origins of the solar wind.

For the new study, Parker Solar Probe took data at a distance of 24 million kilometres from the Sun, inside the orbit of Mercury. It will fly successively closer to the Sun in the coming years, eventually reaching a distance of less than six million kilometres from its surface and far closer than the Earth's average distance of 150 million kilometres.

Scientists know the properties of the solar wind change as it travels from the Sun to the Earth, so studying the solar wind closer to its origin should reveal more about how it is created and evolves.

Parker Solar Probe will also be joined next year by Solar Orbiter, a European Space Agency mission with Imperial kit onboard.

Professor Horbury added: "Although Parker Solar Probe will get even more accurate measurements of the young solar wind at its closest approach, it's too close for telescopes, so it won't be able to see what features on the surface of the Sun may be creating the structures of the solar wind.

"This is where Solar Orbiter comes in. It will not go as close to the Sun, but will have sophisticated telescopes and instruments on board that will be able to see from a distance what might be causing phenomena Parker Solar probe is detecting up close, forming a fuller picture of what creates and accelerates the solar wind."

Other results from the first data include measurement of the speed the solar wind, which does not flow radially away from the Sun, but has a sideways speed of 15-25 times faster than predicted; and a 'snowplow' effect where charged particles bunch up before being accelerated by a coronal mass ejection event.
-end-


Imperial College London

Related Solar Wind Articles:

Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.
Closest-ever approach to the sun gives new insights into the solar wind
The Parker Solar Probe spacecraft, which has flown closer to the sun than any mission before, has found new evidence of the origins of the solar wind.
SwRI-built instrument confirms solar wind slows farther away from the Sun
Measurements taken by the Solar Wind Around Pluto (SWAP) instrument aboard NASA's New Horizons spacecraft are providing important new insights from some of the farthest reaches of space ever explored.
Switching to solar and wind will reduce groundwater use
IIASA researchers explored optimal pathways for managing groundwater and hydropower trade-offs for different water availability conditions as solar and wind energy start to play a more prominent role in the state of California.
Solar and wind energy preserve groundwater for drought, agriculture
A Princeton University-led study in Nature Communications is among the first to show that solar and wind energy not only enhance drought resilience, but also aid in groundwater sustainability.
Researchers recreate the sun's solar wind and plasma 'burps' on Earth
A new study by University of Wisconsin-Madison physicists mimicked solar winds in the lab, confirming how they develop and providing an Earth-bound model for the future study of solar physics.
Spacecraft measurements reveal mechanism of solar wind heating
Queen Mary University of London has led a study which describes the first direct measurement of how energy is transferred from the chaotic electromagnetic fields in space to the particles that make up the solar wind, leading to the heating of interplanetary space.
New insights on comet tails are blowing in the solar wind
Combined observations of Comet McNaught -- one of the brightest comets visible from Earth in the past 50 years -- have revealed new insights on the nature of comets and their relationship with the Sun.
Wind and solar farms offer an unexpected benefit to the Sahara Desert: More water
Wind and solar farms appear to enhance local rainfall and also vegetation cover in the Sahara Desert, a new study reveals.
Large wind and solar farms in the Sahara would increase heat, rain, vegetation
Wind and solar farms are known to have local effects on heat, humidity and other factors that may be beneficial -- or detrimental -- to the regions in which they are situated.
More Solar Wind News and Solar Wind Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab