Nav: Home

Adding copper strengthens 3D-printed titanium

December 04, 2019

Successful trials of titanium-copper alloys for 3D printing could kickstart a new range of high-performance alloys for medical device, defence and aerospace applications.

Current titanium alloys used in additive manufacturing often cool and bond together in column-shaped crystals during the 3D printing process, making them prone to cracking or distortion.

And unlike aluminium or other commonly used metals, there is no commercial grain refiner for titanium that manufacturers can use to effectively refine the microstructure to avoid these issues.

But now a new titanium alloy with copper, unveiled today in Nature, appears to have solved this problem.

Professor Mark Easton from RMIT University's School of Engineering said their titanium-copper alloy printed with "exceptional properties" without any special process control or additional treatment.

"Of particular note was its fully equiaxed grain structure: this means the crystal grains had grown equally in all directions to form a strong bond, instead of in columns, which can lead to weak points liable to cracking."

"Alloys with this microstructure can withstand much higher forces and will be much less likely to have defects, such as cracking or distortion, during manufacture," Easton said.

The collaborative project involved leading researchers in the area of alloy composition and grain microstructure from RMIT University, CSIRO, the University of Queensland and the Ohio State University.

CSIRO Senior Principal Research Scientist, Dr Mark Gibson, said their findings also suggest similar metal systems could be treated in the same way to improve their properties.

"Titanium-copper alloys are one option, particularly if the use of other additional alloying elements or heat treatments can be employed to improve the properties further," he said.

"But there are also a number of other alloying elements that are likely to have similar effects. These could all have applications in the aerospace and biomedical industries."

Gibson said the new breed of alloys could increase manufacturers' production rates and allow for more complex parts to be manufactured.

"In general, it opens up the possibility of developing a new range of titanium-based alloys specifically developed for 3D printing with exceptional properties," he said.

"It has been a delight, as it has been my good fortune for some time, to work on such an interesting and significant project as this with such a talented band of scientists."
-end-
The work was part of a project funded by the Australian Research Council. The study 'Additive manufacturing of ultrafine-grained high-strength titanium alloys' is published in Nature with DOI 10.1038/s41586-019-1783-1

RMIT researchers involved in the multi-partner collaboration: Dr Dong Qiu, Professor Mark Easton and Dr Duyao Zhang.

RMIT University

Related Titanium Articles:

Skoltech scientists developed a new cathode material for metal-ion batteries
Researchers from the Skoltech Center for Energy Science and Technology (CEST) created a new cathode material based on titanium fluoride phosphate, which enabled achieving superior energy performance and stable operation at high discharge currents.
First view of hydrogen at the metal-to-metal hydride interface
University of Groningen physicists have visualized hydrogen at the titanium/titanium hydride interface using a transmission electron microscope.
The properties of thin titanium oxide films have been studied
Some titanium oxides are known for their unique properties, such as increased photocatalytic activity (i.e. they effectively use light to speed up chemical reactions).
Adding copper strengthens 3D-printed titanium
Successful trials of titanium-copper alloys for 3D printing could kickstart a new range of high-performance alloys for medical device, defence and aerospace applications.
Fatigue-resistant, high-performance cooling materials enabled by 3D printing
High-performance solid-state elastocaloric cooling materials with exceptional fatigue resistance are made possible by 3D printing a nickel-titanium based alloy, researchers report.
Common food additive found to affect gut microbiota
Experts call for better regulation of a common additive in foods and medicine, as research reveals it can impact the gut microbiota and contribute to inflammation in the colon, which could trigger diseases such as inflammatory bowel diseases and colorectal cancer.
Layering titanium oxide's different mineral forms for better solar cells
A Japan-based research team led by Kanazawa University improved the efficiency of a new type of solar cell with a double layer consisting of pure anatase and brookite, two different mineral forms of titanium oxide.
Penn engineer's 'metallic wood' has the strength of titanium and the density of water
In a new study published in Nature Scientific Reports, researchers at the University of Pennsylvania's School of Engineering and Applied Science, the University of Illinois at Urbana-Champaign, and the University of Cambridge have built a sheet of nickel with nanoscale pores that make it as strong as titanium but four to five times lighter.
Alcohols as carbon radical precursors
Carbon radicals are attractive intermediates for organic synthesis because of their diversity and high reactivities.
Aluminum on the way to titanium strength
NUST MISIS scientists have proposed a technology that can double the strength of composites obtained by 3D printing from aluminum powder, and advance the characteristics of these products to the quality of titanium alloys: titanium's strength is about six times higher than that of aluminum, but the density of titanium is 1.7 times higher.
More Titanium News and Titanium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.