Nav: Home

U-M researchers discover stress in early life extends lifespan

December 04, 2019

ANN ARBOR--Some stress at a young age could actually lead to a longer life, new research shows.

University of Michigan researchers have discovered that oxidative stress experienced early in life increases subsequent stress resistance later in life.

Oxidative stress happens when cells produce more oxidants and free radicals than they can deal with. It's part of the aging process, but can also arise from stressful conditions such as exercise and calorie restriction.

Examining a type of roundworm called C. elegans, U-M scientists Ursula Jakob and Daphne Bazopoulou found that worms that produced more oxidants during development lived longer than worms that produced fewer oxidants. Their results are published in the journal Nature.

Researchers have long wondered what determines variability in lifespan, says Jakob, a professor of molecular, cellular and developmental biology. One part of that is genetics: If your parents are long-lived, you have a good chance for living longer as well. Environment is another part.

That other stochastic--or random--factors might be involved becomes clear in the case of C. elegans. These short-lived organisms are a popular model system among aging researchers in part because every hermaphroditic mother produces hundreds of genetically identical offspring. However, even if kept in the same environment, the lifespan of these offspring varies to a surprising extent, Jakob says.

"If lifespan was determined solely by genes and environment, we would expect that genetically identical worms grown on the same petri dish would all drop dead at about the same time, but this is not at all what happens. Some worms live only three days while others are still happily moving around after 20 days," Jakob said. "The question then is, what is it, apart from genetics and environment, that is causing this big difference in lifespan?"

Jakob and Bazopoulou, a postdoctoral researcher and lead author of the paper, found one part of the answer when they discovered that during development, C. elegans worms varied substantially in the amount of reactive oxygen species they produce.

Reactive oxygen species, or ROS, are oxidants that every air-breathing organism produces. ROS are closely associated with aging: the oxidative damage they elicit are what many anti-aging creams claim to combat. Bazopoulou and Jakob discovered that instead of having a shorter lifespan, worms that produced more ROS during development actually lived longer.

"Experiencing stress at this early point in life may make you better able to fight stress you might encounter later in life," Bazopoulou said.

When the researchers exposed the whole population of juvenile worms to external ROS during development, the average lifespan of the entire population increased. Though the researchers don't know yet what triggers the oxidative stress event during development, they were able to determine what processes enhanced the lifespan of these worms.

To do this, Bazopoulou sorted thousands of C. elegans larvae according to the oxidative stress levels they have during development. By separating worms that produced large amounts of ROS from those that produced little amounts of ROS, she showed that the main difference between the two groups was a histone modifier, whose activity is sensitive to oxidative stress conditions.

The researchers found that the temporary production of ROS during development caused changes in the histone modifier early in the worm's life. How these changes persist throughout life and how they ultimately affect and extend lifespan is still unknown. What is known, however, is that this specific histone modifier is also sensitive to oxidative stress sensitive in mammalian cells. Additionally, early-life interventions have been shown to extend lifespans in mammalian model systems such as mice.

"The general idea that early life events have such profound, positive effects later in life is truly fascinating. Given the strong connection between stress, aging and age-related diseases, it is possible that early events in life might also affect the predisposition for age-associated diseases, such as dementia and Alzheimer's disease," Jakob said.

Next, the researchers want to figure out what key changes are triggered by these early-life events. Understanding this might allow scientists to develop lifespan-extending interventions that work at later stages in life.
-end-
Ursula Jakob

Daphne Bazopoulou

Study: Developmental ROS Individualizes Organismal Stress Resistance and Lifespan. PDFs available upon request.

University of Michigan

Related Stress Articles:

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.
How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.