Nav: Home

WFIRM scientists push bioprinting capability forward

December 04, 2019

WINSTON-SALEM, NC, -- Dec. 4, 2019 -- Wake Forest Institute for Regenerative Medicine (WFIRM) scientists are the first to report using bioprinting to print a tracheal tissue construct comprised of multiple different functional materials. They printed different designs of smooth muscle and cartilage regions in artificial tracheal substitutes showing similar mechanical properties to human tracheal tissue.

Previous attempts of tissue engineered tracheal constructs have presented many different limitations, mainly because they focused only on using regenerated cartilage tissue. The WFIRM tracheal constructs are novel in that they were bioprinted with separate cartilage and smooth muscle regions at the same time using a biodegradable polyester material and hydrogels containing human mesenchymal stem cells which can self renew and can become a variety of cell types. In this case, the stem cells differentiated into two different cell types -- chondrocytes and smooth muscles cells -- in different regions of the bioprinted tracheal constructs. The cartilage portion is stiff to provide mechanical support to avoid collapse while the smooth muscle is pliable and connects the ends of the cartilage rings, allowing sufficient flexibility for airway contraction.

"People have tried other materials, but the problem has been they were using just one material that is not strong enough to hold the airways open and does not provide the flexibility needed. Our bioprinting method provides a combination of flexibility and strength needed to mimic native tracheal tissue," said Sean Murphy, PhD, lead author and assistant professor of regenerative medicine at WFIRM.

The trachea is a hollow tube that is made of cartilage and smooth muscle tissue designed to allow a flexible airway that resists collapse. Tracheal stenosis is the abnormal narrowing and stiffening of the trachea, which can be caused due to prolonged intubation, inflammation and trauma or it can be a congenital abnormality. The primary treatments for the condition, which is rare but life threatening, are surgical interventions that have challenges and limitations.

For this study, published online in the journal Biofabrication, the research approach combines three tailored technologies: patient specific medical imaging, hydrogels designed to drive differentiation of stem cells, and polymeric scaffolding mimicking specific biomechanical properties.

Murphy said the approach was to incorporate softer hydrogels containing stem cells into the pores of the bioprinted tracheal structures. "We already knew we could differentiate these cells in 2D into smooth muscle or cartilage, but the question of whether we could do that in bioprinted 3D constructs remained," he said. "We added growth factors to help give them the extra push they needed."

"This early proof-of-concept study shows that we can streamline bioprinting capabilities and could someday provide the opportunity for regenerative medicine treatments for the replacement of damaged or diseased tracheal regions," said Anthony Atala, M.D., director of WFIRM and co-author of the paper. "Next steps in the research would be to evaluate long-term function to ensure appropriate tissue formation and strength retention."
-end-
Co-authors include Dongxu Ke, Hualin Yi, Savannah Est-Witte, Sunil George, Carlos Kengla and Sang Jin Lee, all of WFIRM.

Editor's note: Bioprinting b-roll is available.

Media Contact: Bonnie Davis, bdavis@wakehealth.edu; 336-713-1597.

About the Wake Forest Institute for Regenerative Medicine: The Wake Forest Institute for Regenerative Medicine is recognized as an international leader in translating scientific discovery into clinical therapies, with many world firsts, including the development and implantation of the first engineered organ in a patient. Over 400 people at the institute, the largest in the world, work on more than 40 different tissues and organs. A number of the basic principles of tissue engineering and regenerative medicine were first developed at the institute. WFIRM researchers have successfully engineered replacement tissues and organs in all four categories - flat structures, tubular tissues, hollow organs and solid organs - and 14 different applications of cell/tissue therapy technologies, such as skin, urethras, cartilage, bladders, muscle, kidney, and vaginal organs, have been successfully used in human patients. The institute, which is part of Wake Forest University, is located in the Innovation Quarter in downtown Winston-Salem, NC, and is driven by the urgent needs of patients. The institute is making a global difference in regenerative medicine through collaborations with over 400 entities and institutions worldwide, through its government, academic and industry partnerships, its start-up entities, and through major initiatives in breakthrough technologies, such as tissue engineering, cell therapies, diagnostics, drug discovery, biomanufacturing, nanotechnology, gene editing and 3D printing.

Wake Forest Baptist Medical Center

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab