Nav: Home

Parker Solar Probe: 'We're missing something fundamental about the sun'

December 04, 2019

ANN ARBOR--Our closest-ever look inside the sun's corona has unveiled an unexpectedly chaotic world that includes rogue plasma waves, flipping magnetic fields and distant solar winds under the thrall of the sun's rotation, according to University of Michigan researchers who play key roles in NASA's Parker Solar Probe mission.

The U-M findings, part of the first wave of results from the spacecraft that launched in August 2018, provide important insights into two fundamental questions the mission was designed to answer: Why does the sun's corona get hotter as your move further away from the surface? And what accelerates the solar wind--an outward stream of protons, electrons and other particles emanating from the corona.

Both questions have ramifications for how we predict, detect and prepare for solar storms and coronal mass ejections that can have dramatic impacts on Earth's power grid and on astronauts.

"Even with just these first orbits, we've been shocked by how different the corona is when observed up close," said Justin Kasper, a professor of climate and space sciences and engineering at U-M who serves as principal investigator for Parker's Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite.

"These observations will fundamentally change our understanding of the sun and the solar wind and our ability to forecast space weather events."

Findings from data collected during the spacecraft's first two encounters with the sun will be published in four papers in Nature on Dec. 4. Kasper led one of the studies and is co-author of two others.

Solar wind acceleration findings

The spacecraft revealed that the sun's rotation impacts the solar wind much farther away than previously thought. Researchers knew that close in, the sun's magnetic field pulls the wind in the same direction as the star's rotation. Farther from the sun, at the distance the spacecraft measured in these first encounters, they had expected to see, at most, a weak signature of that rotation.

"To our great surprise, as we neared the sun, we've already detected large rotational flows--10 to 20 times greater than what standard models of the sun predict," Kasper said. "So we are missing something fundamental about the sun, and how the solar wind escapes.

"This has huge implications. Space weather forecasting will need to account for these flows if we are going to be able to predict whether a coronal mass ejection will strike Earth, or astronauts heading to the moon or Mars," Kasper said.

Coronal heating findings

Parker Solar Probe's findings regarding the sun's magnetic field--which is believed to play a role in the coronal heating mystery--were equally surprising. From Earth's vantage point, magnetic oscillations called "Alfvén waves" were detected in the solar wind long ago. Some researchers though they may be remnants of whatever mechanism caused the heating phenomenon.

Parker researchers were on the lookout for indications that might be the case, but found something unexpected.

"When you get closer to the sun, you start seeing these 'rogue' Alfvén waves that have four times the energy than the regular waves around them," Kasper said. "They feature 300,000 mph velocity spikes that are so strong, they actually flip the direction of the magnetic field."

Those polarity-reversing velocity spikes offer another potential candidate for what may cause the corona to get hotter moving away from the sun.

"All of this new information from Parker Solar Probe will cause a fundamental rethinking of how the magnetic field of the Sun behaves and is coupled to the acceleration of the solar wind," said Lennard Fisk, the Thomas M. Donahue Distinguished University Professor of Climate and Space Sciences and Engineering.
-end-
Video Link: https://www.youtube.com/watch?v=wUr0CRjQjfQ

Kasper is first author of a paper titled "Alfvénic velocity spikes and rotational flows in the near-Sun solar wind." Once the embargo lifts, it will be available at https://www.nature.com/articles/s41586-019-1813-z.

University of Michigan

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.