Detecting solar neutrinos with the Borexino experiment

December 04, 2020

Neutrinos are chargeless particles with about a mass about a millionth that of an electron that are created by the nuclear processes that occur in the Sun and other stars. These particles are often colourfully described as the 'ghosts' of the particle zoo because they interact so weakly with matter. A paper published in EPJ C by the Borexino collaboration - including XueFeng Ding, Postdoc Associate of Physics at Princeton University, United States - documents the attempts of the Borexino experiment to measure low-energy neutrinos from the Sun's carbon-nitrogen-oxygen (CNO) cycle for the first time.

"This giant instrument, buried beneath the Gran Sasso mountains in the Gran Sasso National Laboratory in Italy, is capturing ghost-like neutrinos from a so-called CNO process in the very centre of the Sun," Ding explains. "We made tens of thousands of simulations and predicted that we would be able to prove these 'CNO' ghosts exist for the first time in human history ever."

The Sun produces energy by converting four hydrogen nuclei to one helium nucleus through two mechanisms. The majority of energy produced by the Sun is initiated by the direct fusion of two protons into a deuteron, starting the pp chain, the other mechanism is catalysed by heavier nuclei, such as carbon, nitrogen and oxygen, known as the CNO cycle - which produces about 1% of our star's energy output. As well as this small energy contribution, the CNO cycle should also produce about 1% of the neutrinos that stream from the Sun.

"Neutrinos from the CNO cycle process in the Sun had remained essentially hypothetical until the recent report of Borexino on the Neutrino 2020 conference," Ding says. "Borexino has been looking for CNO neutrinos since 2016 after the thermal insulation system and active temperature control system were installed. This paper reports a quantitative study on the Borexino sensitivity in searching for CNO neutrinos and explains the methodology."

Since the Sun itself only has a 1% CNO branch, and since neutrinos are already incredibly difficult to detect, there has been essentially no measurement yet of the CNO process itself, even though it is believed to be the dominate energy production avenue in stars much more massive than the Sun. Detecting neutrinos from the CNO cycle will teach researchers much more about it, in turn revealing the secrets locked beneath the surface of the Universe's most massive stars.
-end-
References

M. Agostini et al. (BOREXINO collaboration), (2020), Sensitivity to neutrinos from the solar CNO cycle in Borexino, European Physical Journal C 80:1091, DOI 10.1140/epjc/s10052-020-08534-2

Springer

Related Neutrinos Articles from Brightsurf:

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

Physicists cast doubt on neutrino theory
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.

Exotic neutrinos will be difficult to ferret out
An international team tracking the 'new physics' neutrinos has checked the data of all the relevant experiments associated with neutrino detections against Standard Model extensions proposed by theorists.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.

Read More: Neutrinos News and Neutrinos Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.