Ionic defect landscape in perovskite solar cells revealed

December 04, 2020

The group of so-called metal halide perovskites as materials has revolutionized the field of photovoltaics in recent years. Generally speaking, metal halide perovskites are crystalline materials that follow the structure ABX3, with varying composition. Here, A, B, and X can represent a combination of different organic and inorganic ions. These materials have a number of properties that are ideal for use in solar cells and could help to make optoelectronic devices such as lasers, light-emitting diodes (LEDs), or photodetectors much more efficient. With regard to the development of a resource- and energy-efficient technology, the relevance of research on these materials is very high.

The advantageous properties of metal halide perovskites include their high light-harvesting capacity and their remarkable ability to efficiently convert solar energy into electrical energy. Another special feature of these materials is that both charge carriers and ions are mobile within them. While charge carrier transport is a fundamental process required for the photovoltaic operation of the solar cell, ionic defects and ion transport often have undesirable consequences on the performance of these devices. Despite significant progress in this field of research, many questions regarding the physics of ions in perovskite materials remain open.

On the way to a better understanding of these structures, the Technical Universities of Chemnitz and Dresden have now taken a big step forward. In a joint investigation by the research groups around Prof. Dr. Yana Vaynzof (Chair of Emerging Electronic Technologies at the Institute of Applied Physics and Center for Advancing Electronics Dresden - cfaed, TU Dresden) and Prof. Dr. Carsten Deibel (Optics and Photonics of Condensed Matter, Chemnitz University of Technology) under the leadership of Chemnitz University of Technology, the two teams uncovered the ionic defect landscape in metal halide perovskites. They were able to identify essential properties of the ions that make up these materials. The migration of the ions leads to the presence of defects in the material, which have a negative effect on the efficiency and stability of perovskite solar cells. The working groups found that the motion of all observed ions, despite their different properties (such as positive or negative charge), follows a common transport mechanism and also allows the assignment of defects and ions. This is known as the Meyer-Neldel rule. The results were published in the renowned journal "Nature Communications" (11, 6098 (2020)) .

"Probing the ionic defect landscape of perovskite materials is not a simple task," says Sebastian Reichert, research assistant at the Chair of Optics and Photonics of Condensed Matter at Chemnitz University of Technology and lead author of the publication. "We needed to perform extensive spectroscopic characterization on perovskite samples in which the defects were intentionally introduced and their type and density were gradually tuned. Therefore, the expertise of both teams was invaluable," Reichert explains. Clarifying basic transport mechanisms

"One of the most important results of our study is the intricate interplay between the ionic and electronic landscapes in perovskite materials," adds Prof. Vaynzof, "By changing the density of the various ionic defects in perovskite materials, we observe that the built-in potential and the open-circuit voltage of the devices are affected." This highlights that defect engineering is a powerful tool to enhance the performance of perovskite solar cells beyond the state of the art.

The joint study also found that all ionic defects meet the so-called Meyer-Neldel rule. "This is very exciting since it reveals fundamental information about the hopping processes of ions in perovskites," says Prof. Deibel. "We currently have two hypotheses regarding the origin of this observation and we plan to investigate those in our future studies."
-end-
Background: Cooperation of Chemnitz and Dresden in the DFG's SPP 2196

Carsten Deibel's research group is leading in the field of impedance and deep-level transient spectroscopy, powerful methods for the investigation of defects in semiconductor materials. The group of Yana Vaynzof developed a method to influence and control the type and density of defects in perovskite materials by intentionally modifying the stoichiometry of the solution from which they are deposited. These materials are then used to produce solar cells so that their spectroscopic characterization can be directly correlated to their photovoltaic performance.

The two teams are working on their joint project Perovskite Defects: Physics, Evolution and Stability (PERFECT PVs) as part of the German Research Foundation (DFG)'s Priority Program (SPP) 2196 Perovskite Semiconductors: From Fundamental Properties to Application.

Publication: Yana Vaynzof, Carsten Deibel, Sebastian Reichert et al.: Probing the ionic defect landscape in halide perovskite solar cells. Nature Communications volume 11, Article number: 6098 (2020). DOI: https://doi.org/10.1038/s41467-020-19769-8

Media inquiries: Prof. Dr. Carsten Deibel, Professorship in Physics: Optics and Photonics of Condensed Matter at Chemnitz University of Technology, Tel.: +49 371 531-34878, E-Mail: deibel@physik.tu-chemnitz.de

Prof. Dr. Yana Vaynzof, Chair for Emerging Electronic Technologies at the Institute for Applied Physics and the Center for Advancing Electronics Dresden - cfaed at TU Dresden, Tel. +49 351 463-42132, E-Mail yana.vaynzof@tu-dresden.de

Technische Universität Dresden

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.