Inouye Solar Telescope releases first image of a sunspot

December 04, 2020

The world's largest solar observatory, the U.S. National Science Foundation's Daniel K. Inouye Solar Telescope, just released its first image of a sunspot. Although the telescope is still in the final phases of completion, the image is an indication of how the telescope's advanced optics and four-meter primary mirror will give scientists the best view of the Sun from Earth throughout the next solar cycle.

The image, taken January 28, 2020, is not the same naked eye sunspot currently visible on the Sun. This sunspot image accompanies a new paper by Dr. Thomas Rimmele and his team. Rimmele is the associate director at NSF's National Solar Observatory (NSO), the organization responsible for building and operating the Inouye Solar Telescope. The paper is the first in a series of Inouye-related articles featured in Solar Physics. The paper details the optics, mechanical systems, instruments, operational plans and scientific objectives of the Inouye Solar Telescope. Solar Physics will publish the remaining papers in early 2021.

Read Daniel K. Inouye Solar Telescope - Observatory Overview, by Thomas R. Rimmele et al. - Solar Physics volume 295, issue 12, 2020

"The sunspot image achieves a spatial resolution about 2.5 times higher than ever previously achieved, showing magnetic structures as small as 20 kilometers on the surface of the sun," said Rimmele.

The image reveals striking details of the sunspot's structure as seen at the Sun's surface. The streaky appearance of hot and cool gas spidering out from the darker center is the result of sculpting by a convergence of intense magnetic fields and hot gasses boiling up from below.

The concentration of magnetic fields in this dark region suppresses heat within the Sun from reaching the surface. Although the dark area of the sunspot is cooler than the surrounding area of the Sun, it is still extremely hot with a temperature of more than 7,500 degrees Fahrenheit.

This sunspot image, measuring about 10,000 miles across, is just a tiny part of the Sun. However, the sunspot is large enough that Earth could comfortably fit inside.

Sunspots are the most visible representation of solar activity. Scientists know that the more sunspots that are visible on the Sun, the more active the Sun is. The Sun reached solar minimum, the time of fewest sunspots during its 11-year solar cycle, in December 2019. This sunspot was one of the first of the new solar cycle. Solar maximum for the current solar cycle is predicted in mid-2025.

"With this solar cycle just beginning, we also enter the era of the Inouye Solar Telescope," says Dr. Matt Mountain, president of the Association of Universities for Research in Astronomy (AURA), the organization that manages NSO and the Inouye Solar Telescope. "We can now point the world's most advanced solar telescope at the Sun to capture and share incredibly detailed images and add to our scientific insights about the Sun's activity."

Sunspots, and associated solar flares and coronal mass ejections, cause many space weather events, which frequently impact the Earth, a consequence of living inside the extended atmosphere of a star. These events affect technological life on Earth. The magnetic fields associated with solar storms can impact power grids, communications, GPS navigation, air travel, satellites and humans living in space. The Inouye Solar Telescope is poised to add important capabilities to the complement of tools optimized to study solar activity particularly magnetic fields.

NSF's Inouye Solar Telescope is located on the island of Maui in Hawai?i. Construction began in 2013 and is slated to be completed in 2021.

"While the start of telescope operations has been slightly delayed due to the impacts of the COVID-19 global pandemic," said Dr. David Boboltz, NSF Program Director for the Inouye Solar Telescope, "this image represents an early preview of the unprecedented capabilities that the facility will bring to bear on our understanding of the Sun."

The Daniel K. Inouye Solar Telescope is a facility of the National Science Foundation operated by the National Solar Observatory under a cooperative agreement with the Association of Universities for Research in Astronomy, Inc. The Inouye Solar Telescope is located on land of spiritual and cultural significance to Native Hawaiian people. The use of this important site to further scientific knowledge is done so with appreciation and respect.
-end-
Image Use:

The images and movies shown here are part of the facility Science Verification Phase. They are for the sole purpose of promotion and are not released for scientific use. Science Verification Phase data is proprietary to the Inouye Solar Telescope project, and its use for publications or outreach purposes requires approval by the NSO Director, and notification to the cognizant NSF program officer. Please contact outreach@nso.edu for details and questions. The original data are still being processed and are not fully calibrated for scientific use. Images have been processed to remove noise and enhance the visibility (contrast) of small-scale (magnetic) features while maintaining their shape. The movie frames have been smoothed to remove noise.

This product is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0). For image use conditions, please visit our image use page or email outreach@nso.edu.

Contacts:

Claire Raftery
Head of Communications
National Solar Observatory
303-735-9044
claire@nso.edu
National Science Foundation
media@nsf.gov

Association of Universities for Research in Astronomy (AURA)

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.