Scientists Describe Structure Of An Enzyme That Uses Iron To Make Hydrogen

December 04, 1998

The workings of an iron-laden bacterial enzyme could one day provide researchers with an inexpensive and stable catalyst to create hydrogen, according to scientists at Utah State University.

With funding from the National Science Foundation (NSF), biochemists John Peters and Lance Seefeldt have made a detailed description of the structure of an enzyme known as CpI, found in the soil microorganism Clostridium pasteurianum. The results of their research on the structure and function of CpI are published in the December 4 issue of the journal Science.

CpI is a hydrogenase, a type of enzyme used by microorganisms to make molecular hydrogen (H2), or through reversing the reaction, break down H2 into protons and electrons. Peters and Seefeldt's study suggests a mechanism by which CpI uses atoms of iron as a means to catalyze the production of H2.

"The iron-only hydrogenase is basically a means to get rid of unwanted electrons," said Kamal Shukla, NSF program manager. "Clostridium pasteurianum uses CpI to convert protons and electrons into (H2), a waste product."

What is a waste product to some organisms might be an incredibly useful product for others. According to Peters, a better understanding of this enzymatic process interests not only biologists and biochemists, but also researchers of alternative energy sources.

"Hydrogen is often mentioned as a future fuel source because it is a renewable and clean-burning energy carrier," said Peters. "The biological production of hydrogen, then, represents a tremendous reserve of energy that we may tap through our understanding of the mechanisms that have evolved in nature."

Attaining the three-dimensional structure of enzymes like CpI may be the first step in tapping into that resource. Peters and Seefeldt depict CpI as a collection of 20 iron atoms arranged in clusters around a mushroom shaped framework. Electrons move in through the 'stem' of the mushroom in a series of reactions between the iron clusters that pass electrons, like a molecular bucket brigade, towards the 'cap' of the mushroom. The 'cap' contains the active site of the enzyme, where the final reaction takes place.

At the active site, more clusters of iron atoms introduce electrons, two at a time, to two protons stripped from a single molecule of water. As newly formed molecules of hydrogen leave the enzyme, they make room for more electrons and protons to take their spot, providing the energy for the next reaction to take place.

"Hopefully, through knowing the structure of the iron-only hydrogenase, protein engineers can work on methods to increase the stability of the enzyme," said Peters. "Once in industrial use, such an efficient source of clean energy is likely to be both economically and environmentally significant."
-end-
Media contact:
Greg Lester
703-306-1070/ glester@nsf.gov

Program contact:
Kamal Shukla
703-306-1444/ kshukla@nsf.gov



National Science Foundation

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.