First image and spectrum of a dark matter object

December 05, 2001

HST and VLT Identify MACHO as a Small and Cool Star

An international team of astronomers has observed a Dark Matter object directly for the first time.

Images and spectra of a MACHO microlens - a nearby dwarf star that gravitationally focuses light from a star in another galaxy - were taken by the NASA/ESA Hubble Space Telescope (HST) and the European Southern Observatory's Very Large Telescope (VLT).

The result is a strong confirmation of the theory that a large fraction of Dark Matter exists as small, faint stars in galaxies such as our Milky Way.

The nature of Dark Matter is one of the fundamental puzzles in astrophysics today. Observations of clusters of galaxies and the large scale structure of individual galaxies tell us that no more than a quarter of the total amount of matter in the Universe consists of normal atoms and molecules that make up the familiar world around us. Of this normal matter, no more than a quarter emits the radiation we see from stars and hot gas. So, a large fraction of the matter in our Universe is dark and of unknown composition.

For the past ten years, active search projects have been underway for possible candidate objects for Dark Matter. One of many possibilities is that the Dark Matter consists of weakly interacting, massive sub-atomic sized particles known as WIMPs. Alternatively, Dark Matter may consist of massive compact objects (MACHOs), such as dead or dying stars (neutron stars and cool dwarf stars), black holes of various sizes or planet-sized collections of rocks and ice.

Astronomers from the Lawrence Livermore National Laboratory, the Center for Particle Astrophysics in the United States and the Australian National University joined forces to form the "MACHO Project" in 1991. This team used a dedicated telescope at the Mount Stromlo Observatory in Australia to monitor the brightness of more than 10 million stars in the Large Magellanic Cloud (LMC) over a period of eight years.

The team discovered their first gravitational lensing event in 1993 and have now published approximately twenty instances of microlenses in the direction of the Magellanic Clouds. These results demonstrate that there is a population of MACHO objects in and around the Milky Way galaxy that could comprise as much as 50% of the Milky Way total (baryonic/normal-matter) Dark Matter content.

In order to learn more about each microlensing event, the MACHO team has used the Hubble Space Telescope (HST) to take high-resolution images of the lensed stars.

One of these images showed a faint red object within a small fraction of an arcsecond from a blue, normal (main-sequence) background star in the Large Magellanic Cloud (ESO PR Photo 35a/01).

The image was taken by Hubble 6 years after the original microlensing event, which had lasted approximately 100 days. The brightness of the faint red star and its direction and separation from the star in the Large Magellanic Cloud are completely consistent with the values indicated 6 years earlier from the MACHO light curve data alone.

This Hubble observation further reveals that the MACHO is a small faint, dwarf star at a distance of 600 light-years, and with a mass between 5% and 10% of the mass of the Sun.

To further confirm these findings, members of the MACHO team sent in a special application for observing time on the FORS2 instrument on the ESO 8.2-m VLT KUEYEN Unit Telescope to obtain spectra of the object. ESO responded swiftly and positively to the request. Although it was not possible to separate the spectra of the MACHO and background star, the combined spectrum (ESO PR Photo 35b/01) showed the unmistakable signs in the red spectral region of the deep absorption lines of a dwarf M star superimposed on the spectrum of the blue main sequence star in the Large Magellanic Cloud.

The combination of the microlensing light curve from the MACHO project, the high-resolution images from Hubble and the spectroscopy from the VLT has established the first direct detection of a MACHO object, to be published in the international science journal "Nature" on December 6, 2001.

Thanks to the HST and VLT observations, the astronomers now have a complete picture of this particular MACHO: its mass, distance and velocity. The result greatly strengthens the argument that a large fraction of the 'normal' Dark Matter in and around our galaxy exists in the form of MACHOs. Thus this Dark Matter is not as dark as previously believed!

Future searches for MACHO-like objects will have the potential to map out this form of Dark Matter and reach a greater understanding of the role that Dark Matter plays in the formation of galaxies. These efforts will further strengthen the drive to reveal the secrets of Dark Matter and take a large step towards closing the books on the mass budget of the Universe.
-end-
Read the full text of ESO Press Release 28/01 (with two photos and all weblinks), available at

http://www.eso.org/outreach/press-rel/pr-2001/pr-28-01.html

ESO

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.