Climate linked to the quality of musical instrument making

December 05, 2003

There has been considerable debate surrounding the reasons why instruments crafted in the late 17th and early 18th centuries are tonally superior to modern instruments. Theories range from the skill of the craftsman to secret techniques such as a special varnish, the drying of the wood, the storage time, or even the use of old wood from historic structures. Lloyd Burckle of the Lamont-Doherty Earth Observatory, Columbia University, and Henri Grissino-Mayer of the Laboratory of Tree Ring Science, University of Tennessee, have proposed an alternate hypothesis--climate. Their research was published in the journal Dendrochronologia.

Burckle and Grissino-Mayer propose that the superior sound quality of instruments from this era may be explained by the climatic regime that gripped Europe and perhaps much of the world from AD 1645 to 1715. Known as the Maunder Minimum, it was a period characterized by a scarcity of sunspots and a reduction in the Sun's overall activity. The less intense solar radiation and activity coincided with a sharp decline in temperature during the Little Ice Age and a period of very cold weather in western Europe. The Maunder Minimum is clearly seen in tree-ring records from high-elevation forest stands in the European Alps. The long winters and cool summers of this 70 year period produced wood that has slow, even growth--desirable properties for producing quality sounding boards.

Antonio Stradivari of Cremona, Italy, perhaps the most famous of violin makers, was born one year before the beginning of the Maunder Minimum. He and other violinmakers of the area used the only wood available to them--from the trees that grew during the Maunder Minimum. Burckle and Grissino suggest that the narrow tree rings that identify the Maunder Minimum in Europe played a role in the enhanced sound quality of instruments produced by the violinmakers of this time. Narrow tree rings would not only strengthen the violin but would increase the wood's density.

The onset of the Maunder Minimum at a time when the skills of the Cremonese violinmakers reached their zenith perhaps made the difference in the violin's tone and brilliance. Climate conditions with temperatures such as those that occurred during this time simply can not and do not occur today in areas where the Cremonese makers likely obtained their wood.
-end-
Lamont-Doherty Earth Observatory
The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world's leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit http://www.ldeo.columbia.edu.

The Earth Institute
The Earth Institute at Columbia University is the world's leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines--earth sciences, biological sciences, engineering sciences, social sciences and health sciences--and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world's poor. For more information, visit http://www.earth.columbia.edu.

The Earth Institute at Columbia University

Related Ice Age Articles from Brightsurf:

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Ice Age manatees may have called Texas home
Manatees don't live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a 'summer vacation' and returning to warmer waters for the winter.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How cold was the ice age? Researchers now know
A University of Arizona-led team has nailed down the temperature of the last ice age -- the Last Glacial Maximum of 20,000 years ago - to about 46 degrees Fahrenheit.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

New study results consistent with dog domestication during ice age
Analysis of Paleolithic-era teeth from a 28,500-year-old fossil site in the Czech Republic provides supporting evidence for two groups of canids -- one dog-like and the other wolf-like - with differing diets, which is consistent with the early domestication of dogs.

Did an extraterrestrial impact trigger the extinction of ice-age animals?
Based on research at White Pond near Elgin, South Carolina, University of South Carolina archaeologist Christopher Moore and 16 colleagues present new evidence of a controversial theory that suggests an extraterrestrial body crashing to Earth almost 13,000 years ago caused the extinction of many large animals and a probable population decline in early humans.

Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.

Read More: Ice Age News and Ice Age Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.