Newts which regrow their hearts

December 05, 2006

When a newt loses a limb, the limb regrows. What is more, a newt can also completely repair damage to its heart. Scientists at the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now started to decode the cellular mechanisms in this impressive ability to regenerate and have discovered the remarkable plasticity of newt heart cells. As mammals, and therefore also humans, do not have this ability, the findings could contribute to new cell therapies for patients with damaged organs (Journal of Cell Science, 2006).

The red-spotted newt, Notophthalmus viridescens, is a favourite animal of the researchers working with Thomas Braun in Nauheim. This amphibian comes from the wetlands of North America, but it also feels quite at home in the Institute’s aquaria. It is a small animal that scientists find interesting for a particular reason: whereas humans cannot regenerate damaged heart muscle adequately after a heart attack and the destroyed muscle tissue scars over instead, following damage, a newt’s heart can be completely repaired and the organ’s function can be completely restored.

The key to this ability to regenerate are the heart muscle cells themselves. When a newt’s heart sustains damage, its cells can lose their characteristic properties; they can dedifferentiate. The researchers were able to show that proteins typical of heart muscle cells - the heavy myosin chain and various troponins - were dramatically down-regulated in this process. At the same time, the cells embark on massive cell division to build up new heart muscle. It takes around two weeks for the heart function to be restored in the newt. The data shows that at this point the expression of the muscle-specific proteins is again normal, i.e. the cells have differentiated again, and have regained their characteristic properties.

The researchers isolated the heart muscle cells and cultured them. In most of the cells, Braun and his colleagues were able to demonstrate the existence of a protein called Phospho-H3. This protein is a marker for the G2 phase of the cell cycle and indicates that the newt heart regenerates without the involvement of stem cells. It also seems that the heart regeneration does not create typical wound healing tissue, called a blastema. Braun explains this finding: "The heart only has a relatively small number of different cell types. This could be a reason why the regeneration of heart tissue does not require a blastema." The researchers in Bad Nauheim found no indication that stem cells were involved in repairing newt hearts.

he process of regenerating lost extremities is different. Unlike in the process with the heart, newts develop a blastema in this case. Blastema cells have certain characteristics in common with stem cells, such as the development into different cell types. The cell biologists in Bad Nauheim injected isolated heart muscle cells into a newt’s leg that was regrowing after amputation. In this environment, the cells began to de-differentiate, as they did in the heart. However, this did not happen when they were injected into an undamaged extremity. Again, the researchers registered the very rapid loss of heart muscle-specific proteins.

"We suspect that the signal for the de-differentiation comes from the area where the wound is healing and the cells communicate with each other," explains Braun. These signals could be transmitted via certain enzymes, for example. An enzyme of this nature - focal adhesion kinase -, which plays a part in the transmission of signals in the cells, is phosphorylated in the transplanted cells and is thus active. The Max Planck researchers in Bad Nauheim hope that better understanding of the molecular issues involved in regeneration in the newt will open up new possibilities for the repairing human patients’ damaged hearts.
-end-
Original work:

Friedemann Laube, Matthias Heister, Christian Scholz, Thilo Borchardt, Thomas Braun: Re-programming of newt cardiomyocytes is induced by tissue regeneration. Journal of Cell Science, 119 (22), 2006

Max-Planck-Gesellschaft

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.