How movement lubricates bone joints

December 05, 2006

Taking a cue from machines that gently flex patients' knees to help them recover faster from joint surgery, bioengineering researchers at UC San Diego have shown that sliding forces applied to cartilage surfaces prompt cells in that tissue to produce molecules that lubricate and protect joints.

The results reported in Osteoarthritis and Cartilage are important in the ongoing efforts of the group led by Robert Sah, a Howard Hughes Medical Institute (HHMI) professor at UCSD's Jacobs School of Engineering, to grow cartilage in the laboratory that can be used to replace patients' injured or diseased joint surfaces.

"We have shown that shear forces on cartilage prompt chondrocyte cells in it to produce proteoglycan 4," said Sah. "This is an important step toward our goal of eventually growing joint tissue for transplantation."

Proteoglycan, a name that reflects its protein and polysaccharide components, is a basic building block of connective tissue throughout the body. The chondrocyte cells of cartilage make several forms of proteoglycans, including several that build up in cartilage and contribute to its stiffness. However, proteoglycan-4 is primarily secreted into the joint fluid where it coats and lubricates cartilage surfaces.

Unfortunately, the smooth surface of the articular cartilage at the ends of bones located at joints often deteriorates with aging, becoming increasingly roughened and eroded. Those joints become painful and progress to osteoarthritis. Surgeons can replace damaged and diseased joints with artificial joints, but they would like to be able to simply resurface patients' existing joints with cartilage.

In a series of experiments, Sah's team attached bovine stifle joints, which are similar to human knee joints, to a bio-reactor that provided continuous irrigation with sterile nutritional fluids under normal physiological conditions. Immobile joints were compared to joints that were flexed 24 hours in a way that mimicked walking motions. The flexing was provided by a specially designed continuous passive motion device.

The team measured up to a three-fold increase in chondrocytes secreting proteoglycan 4 in continuously flexed joints compared to immobile controls. The flexing motion caused cartilage on the surfaces of opposing bones to slide against each other, creating so-called shear forces. In one large surface region of continuously sliding cartilage, 40 percent of the chondrocytes were secreting proteoglycan 4, whereas in the same areas of cartilage in immobilized joints only 13 percent of the chondrocytes were secreting proteoglycan 4. In areas of the joints exposed to only intermittent cartilage sliding, the effect on proteoglycan 4 production was intermediate between continuously sliding and immobilized regions of the joints.

"A challenge for us is to create large tissue grafts for transplantation," said Sah. "We are systematically addressing the technical challenges to maintain and grow healthy fragments of bone and cartilage in the laboratory and now we can use nature's self-regulating system, whereby application of shear forces to this tissue increases its synthesis of proteoglycan 4."

Scientists have known for years that defects in a gene for proteoglycan 4 result in a type of childhood joint failure that resembles osteoarthritis in the elderly. Sah's goal is to stimulate healthy chondrocytes in cartilage tissue grown in the laboratory to form robust tissue that makes proteoglycan 4 and has a smooth, well-lubricated surface.
-end-
The paper in Osteoarthritis and Cartilage, which the journal will make available online the week of Dec. 4, was co-authored by Sah, Gayle E. Nugent-Derfus, now an engineer at Genentech, Inc., Dr. William D. Bugbee, associate adjunct professor of orthopaedics at UCSD and an orthopedic surgeon at Scripps Memorial Hospital in La Jolla, CA, and 13 researchers at UCSD, including six undergraduate students.

Sah's research project and team were funded by the National Institutes of Health (NIH), the National Science Foundation (NSF), the Whitaker Foundation, Irwin and Joan Jacobs, and the UCSD Stein Institute for Research on Aging.

In addition, the project is benefiting from a $1million, four-year grant from HHMI to UCSD for Sah to develop innovative educational programs that "ignite the scientific spark in a new generation of students." A central project accomplishment was made by undergraduates working under the supervision of Sah's team members, especially engineers at Orthofix International's Vista, CA-based BREG, Inc. division. "Undergraduate seniors designed, built, and tested the prototype of the bioreactors in which the experiments were conducted," said Sah. "Thanks to continuing collaboration with BREG and support from HHMI and NSF, additional undergraduates are now working on the project to improve the design of the bioreactor to enable the next round of research and development."

University of California - San Diego

Related Osteoarthritis Articles from Brightsurf:

Major savings possible with app-based osteoarthritis treatment
Osteoarthritis treatment conducted digitally via an app costs around 25% of what conventional care costs, according to a study from Lund University in Sweden published in the research journal PLOS ONE.

New approach to treating osteoarthritis advances
Injections of a natural 'energy' molecule prompted regrowth of almost half of the cartilage lost with aging in knees, a new study in rodents shows.

Bone drug may be beneficial for knee osteoarthritis
Bisphosphonates (a class of drugs that prevent the loss of bone density and used to treat osteoporosis and similar diseases) appear to be safe and beneficial for osteoarthritis patients.

Certain jobs linked to higher risk of knee osteoarthritis
Workers in jobs that typically involve heavy lifting, frequent climbing, prolonged kneeling, squatting, and standing face an increased risk of developing knee osteoarthritis.

App helps reduce osteoarthritis pain
By performing a few simple physical exercises daily, and receiving information about their disease regularly, 500 osteoarthritis patients were able to on average halve their pain in 6 months -- and improve their physical function.

Osteoarthritis can increase your risk for social isolation
In a study published in the Journal of the American Geriatrics Society, researchers examined information from the European Project on OSteoArthritis (EPOSA) study.

High rates of opioid prescriptions for osteoarthritis
Opioids work against severe pain but the risks of side effects and addiction are high.

Disease burden in osteoarthritis is similar to rheumatoid arthritis
Osteoarthritis (OA) has traditionally been viewed as a highly prevalent but milder condition when compared with rheumatoid arthritis (RA), and some may believe that it is part of a normal aging process requiring acceptance, not treatment.

3D printing may help treat osteoarthritis
In a Journal of Orthopaedic Research study, scientists used 3D printing to repair bone in the joints of mini-pigs, an advance that may help to treat osteoarthritis in humans.

Finger joint enlargements may be linked to knee osteoarthritis
Heberden's nodes (HNs) are bony enlargements of the finger joints that are readily detectable in a routine physical exam and are considered hallmarks of osteoarthritis.

Read More: Osteoarthritis News and Osteoarthritis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.