Stretch a DNA loop, turn off proteins

December 05, 2006

It may look like mistletoe wrapped around a flexible candy cane. But this molecular model shows how some proteins form loops in DNA when they chemically attach, or bind, at separate sites to the double-helical molecule that carries life's genetic blueprint.

Biologists have discovered that the physical manifestation of DNA loops are a consequence of many biochemical processes in the cell, such as the regulation of gene expression. In other words, these loops indicate the presence of enzymes or other proteins that are turned on. Now physicists at the University of California, San Diego have discovered that stretching the DNA molecule can also turn off the proteins known to cause loops in DNA

"We showed that certain enzymes acting on DNA could be switched off or on simply by applying a small amount of mechanical tension across the DNA molecule," said Douglas Smith, an assistant professor of physics at UCSD who headed the team that published the discovery in the December issue of the Biophysical Journal. "We showed this by mechanically manipulating and stretching single DNA molecules. This switching effect could provide a molecular mechanism for cells to be able to sense and respond to mechanical stresses that they may normally experience. Such stresses could be generated internally by the cells themselves, such as when the cell undergoes changes in shape during the cell cycle, or as external stresses from the environment."

The amount of tension or stretching that needs to be applied to the molecule is extremely small, Smith added, only one pico-Newton, or one-trillionth of the force generated by the weight of an apple.
-end-
Other members of the UCSD team were Gregory Gemmen, a physics graduate student, and Rachel Millin, a laboratory assistant. The study was supported by grants from the Burroughs Wellcome Fund, Kinship Foundation and Arnold and Mabel Beckman Foundation.

University of California - San Diego

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.