Brain systems become less coordinated with age, even in the absence of disease

December 05, 2007

Cambridge, Mass. -Some brain systems become less coordinated with age even in the absence of Alzheimer's disease, according to a new study from Harvard University. The results help to explain why advanced age is often accompanied by a loss of mental agility, even in an otherwise healthy individual.

The study, published in the Dec. 6 issue of Neuron, was led by Jessica Andrews-Hanna, a doctoral candidate in the Department of Psychology in the Faculty of Arts and Sciences at Harvard, with Justin Vincent, a graduate student in the Department of Psychology and Randy Buckner, Harvard professor of psychology and an investigator with the Howard Hughes Medical Institute. Co-authors also include Andrew Snyder, Denise Head and Marcus Raichle of Washington University in St. Louis and Cindy Lustig of the University of Michigan.

"This research helps us to understand how and why our minds change as we get older, and why some individuals remain sharp into their 90s, while others' mental abilities decline as they age," says Andrews-Hanna. "One of the reasons for loss of mental ability may be that these systems in the brain are no longer in sync with one another."

Previous studies have focused on the specific structures and functions within the brain, and how their deterioration might lead to decreased cognitive abilities. However, this study examined the way that large-scale brain systems that support higher-level cognition correlate and communicate across the brain, and found that in older adults these systems are not in sync. In particular, widely separated systems from the front to the back of the brain were less correlated.

The researchers studied 55 older adults, approximately age 60 and over, and 38 younger adults, approximately age 35 and younger. They used a neuroimaging technique called fMRI to obtain a picture of activity in the brain. The results showed that among the younger people, brain systems were largely in sync with one another, while this was not the case with the older individuals.

Among the older individuals, some of the subjects' brains systems were correlated, and older individuals that performed better on psychometric tests were more likely to have brain systems that were in sync. These psychometric tests, administered in addition to the fMRI scanning, measured memory ability, processing speed and executive function.

Among older individuals whose brain systems did not correlate, all of the systems were not affected in the same way. Different systems process different kinds of information, including the attention system, used to pay attention, and the default system, used when the mind is wandering. The default system was most severely disrupted with age. Some systems do remain intact; for example, the visual system was very well preserved. The study also showed that the white matter of the brain, which connects the different regions of the brain, begins to lose integrity with age.

One of the challenges to studying the aging brain is that the early signs of Alzheimer's disease are very subtle, and it is difficult to distinguish between the early stages of Alzheimer's disease and normal aging. In order to ensure that the researchers were only looking at healthy aging brains, the researchers used a PET scanning process to identify the presence of amyloid, a chemical present in individuals with Alzheimer's. When the presence of this chemical was detected, individuals were not included in the study. In this way, the researchers ensured that they were looking at a healthy aging brain.

"Understanding why we lose cognitive function as we age may help us to prolong our mental abilities later in life," says Buckner. "The results of this study help us to understand how the aging brain differs from the brain of a younger individual."
-end-
The research was funded by the National Institutes of Health, the Alzheimer's Association, and the Howard Hughes Medical Institute.

Harvard University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.