The fine line between stability and instability -- when do gas giants reach the point of no return?

December 05, 2007

Planetary scientists at UCL have identified the point at which a star causes the atmosphere of an orbiting gas giant to become critically unstable, as reported in this week's Nature (December 6). Depending upon their proximity to a host star, giant Jupiter-like planets have atmospheres which are either stable and thin, or unstable and rapidly expanding. This new research enables us to work out whether planets in other systems are stable or unstable by using a three dimensional model to characterise their upper atmospheres.

Tommi Koskinen of UCL's Physics & Astronomy Department is lead author of the paper and says: "We know that Jupiter has a thin, stable atmosphere and orbits the Sun at five Astronomical Units (AU) - or five times the distance between the Sun and the Earth. In contrast, we also know that closely orbiting exoplanets like HD209458b - which orbits about 100 times closer to its sun than Jupiter does - has a very expanded atmosphere which is boiling off into space. Our team wanted to find out at what point this change takes place, and how it happens.

"Our paper shows that if you brought Jupiter inside the Earth's orbit, to 0.16AU, it would remain Jupiter-like, with a stable atmosphere. But if you brought it just a little bit closer to the Sun, to 0.14AU, its atmosphere would suddenly start to expand, become unstable and escape. This dramatic change takes place because the cooling mechanism that we identified breaks down, leading to the atmosphere around the planet heating up uncontrollably."

Professor Alan Aylward, co-author of the paper, explains some of the factors which the team incorporated in order to make the breakthrough: "For the first time we've used 3D-modelling to help us understand the whole heating process which takes place as you move a gas giant closer to its sun. The model incorporates the cooling effect of winds blowing around the planet - not just those blowing off the surface and escaping.

"Crucially, the model also makes proper allowances for the effects of H3+ in the atmosphere of a planet. This is an electrically-charged form of hydrogen which strongly radiates sunlight back into space and which is created in increasing quantities as you heat a planet by bringing it closer to its star.

"We found that 0.15AU is the significant point of no return. If you take a planet even slightly beyond this, molecular hydrogen becomes unstable and no more H3+ is produced. The self-regulating, 'thermostatic' effect then disintegrates and the atmosphere begins to heat up uncontrollably."

Professor Steve Miller, the final contributing author to the paper, puts the discovery into context: "This gives us an insight to the evolution of giant planets, which typically form as an ice core out in the cold depths of space before migrating in towards their host star over a period of several million years. Now we know that at some point they all probably cross this point of no return and undergo a catastrophic breakdown.

"Just twelve years ago astronomers were searching for evidence of the first extrasolar planet. It's amazing to think that since then we've not only found more than 250 of them, but we're also in a much better position to understand where they came from and what happens to them during their lifetime."
-end-
Notes to editors:

For additional information or to arrange an interview with a member of the research team please contact:

Dave Weston in the UCL Media Relations Office on tel: +44 (0)20 7679 7678, mobile: +44 (0) 7733 307 596, out of hours +44 (0)7917 271 364, e-mail: d.weston@ucl.ac.uk

About UCL:

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. In the government's most recent Research Assessment Exercise, 59 UCL departments achieved top ratings of 5* and 5, indicating research quality of international excellence.

UCL is in the top ten world universities in the 2007 THES-QS World University Rankings, and the fourth-ranked UK university in the 2007 league table of the top 500 world universities produced by the Shanghai Jiao Tong University. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay.

University College London

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.