'Flying Fish' unmanned aircraft takes off and lands on water

December 05, 2007

ANN ARBOR, Mich.---Flying fish were the inspiration for an unmanned seaplane with a 7-foot wingspan developed at the University of Michigan. The autonomous craft is believed to be the first seaplane that can initiate and perform its own takeoffs and landings on water.

Funded by the Department of Defense's Defense Advanced Research Projects Agency (DARPA), it is designed to advance the agency's "persistent ocean surveillance" program.

Engineering researchers from U-M recently returned from sea trials off the coast of Monterey, Calif., where they demonstrated the craft's capability to DARPA officials.

"The vehicle did very well," said Hans Van Sumeren, associate director of the U-M Marine Hydrodynamics Laboratories. "To take off and land in the water was a big effort. We did it 22 times."

The researchers named the robotic plane Flying Fish after its inspiration. Guy Meadows, director of the U-M Marine Hydrodynamics Laboratories, conceived of the design while out on the water. "I saw these fish pop up and soar over the waves," Meadows said.

That got Meadows and his colleagues looking at sea birds for a design for their craft.

"We studied sea birds seriously," Meadows said. "They're all about the same size---about 20 pounds with a 2-meter wingspan. It turns out that, aerodynamically speaking, that's a sweet spot to be flying close to the water. Our plane is about the size of a large pelican."

Flying Fish, an electric vehicle, drifts until its onboard Global Positioning System tells the craft it has floated too far. That triggers the takeoff sequence, which gets the plane airborne in just 10 meters. Other GPS coordinates trigger the landing sequence. The craft accomplishes both in simple ways, explained Ella Atkins, associate professor of aerospace engineering and associate professor of electrical engineering and computer science.

The flight pattern is, for the most part, a recording of a graduate student's piloting of the plane. That means the takeoff is blind, Atkins explained. The plane takes no measurements of its surroundings. The waves would confuse it.

"Most people wouldn't do it this way," Atkins said. "The plane puts the motors on at full throttle and sets the pitch elevator enough to break out of the water. Then it counts and pitches forward. We believe that if we had done it any other way, we would have basically dived into the ocean on takeoff because the plane would have detected huge oscillations due to the waves."

The landing is basically a shallow descent.

"When it impacts the water, it goes, 'Oh, there's the water,'" Akins said. "The boat has very well-designed pontoons. Because it doesn't have a flat bottom, it cuts into the water like a diver, as opposed to belly-flopping."

The craft was a collaborative effort among researchers in the departments of Naval Architecture and Marine Engineering, Electrical Engineering and Computer Science and Aerospace Engineering.

Next, the team plans to outfit the plane with solar power and add more sensors.
-end-
Meadows is also a professor of naval architecture and marine engineering and a professor of atmospheric, oceanic and space sciences.

For more information on the Flying Fish project at the U-M Marine Hydrodynamics Laboratories, visit: http://www.engin.umich.edu/dept/name/facilities/mhl/projects/flying_fish.html

Guy Meadows and Hans Van Sumeren: http://www.engin.umich.edu/dept/name/facilities/mhl/people.html

Ella Akins: http://aerospace.engin.umich.edu/people/faculty/atkins/

To see this release online, visit: http://www.ns.umich.edu/htdocs/releases/story.php?id=6217

Michigan Engineering:

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

University of Michigan

Related Electrical Engineering Articles from Brightsurf:

Knotting semimetals in topological electrical circuits
Scientists created exotic states of matter using electrical circuit enhanced by machine-learning algorithm

Physicists make electrical nanolasers even smaller
Researchers cleared the obstacle that had prevented the creation of electrically driven nanolasers for integrated circuits.

Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.

Using electrical stimulus to regulate genes
A team of researchers led by ETH professor Martin Fussenegger has succeeded in using an electric current to directly control gene expression for the first time.

2D oxide flakes pick up surprise electrical properties
Rice University researchers find evidence of piezoelectricity in lab-grown, two-dimensional flakes of molybdenum dioxide.

Electrical activity in living organisms mirrors electrical fields in atmosphere
A new Tel Aviv University study provides evidence for a direct link between electrical fields in the atmosphere and those found in living organisms, including humans.

3D-printed plastics with high performance electrical circuits
Rutgers engineers have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile drones and better-performing small satellites, biomedical implants and smart structures.

In and out with 10-minute electrical vehicle recharge
Electric vehicle owners may soon be able to pull into a fueling station, plug their car in, go to the restroom, get a cup of coffee and in 10 minutes, drive out with a fully charged battery, according to a team of engineers.

Electrical stimulation aids in spinal fusion
Spine surgeons in the U.S. perform more than 400,000 spinal fusions each year as a way to ease back pain and prevent vertebrae in the spine from wiggling around and doing more damage.

Fat pumps generate electrical power
A previously unknown electrical current develops in the body's cells when the vital fat pump function of the flippases transfers ('flips') lipids from the outer to the inner layer of the body's cell membranes.

Read More: Electrical Engineering News and Electrical Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.