UNC-led team tests commonly used antibodies

December 05, 2010

If a strand of your DNA was stretched out completely, it would be more than six feet long. It's hard to imagine that it can fit inside the nucleus of one of your cells, but that's exactly how it works.

For much of the last century, scientists have been busy figuring out how DNA is packaged in cells, and have found strong indications that the packaging is integral to how DNA works. The packaging - comprised mostly of an amino acid molecule called a histone - influences the on and off switches of different genes that regulate cellular function and play a role in human diseases ranging from cancer to genetic disorders. Scientists study histones by using antibodies to specific "flavors" of histones that are only very slightly different from one another. The antibodies help to pinpoint what DNA is being packaged by a certain kind of "flavor" of histone, and how that affects gene regulation. Different flavors affect genes differently.

"And this is where it gets complicated," says Jason Lieb, PhD, who led the project. "Many companies make these antibodies that we scientists use in our labs - but there are so many different kinds of histones and types of tests we do that it's just not feasible for the companies to anticipate every single way that a given antibody can be used."

This is a problem, explains Lieb, who is a professor of biology at UNC-Chapel Hill and member of UNC Lineberger Comprehensive Cancer Center, since scientists can't be absolutely certain that the antibody is recognizing a specific "flavor" of histone, or one that is very closely related.

"Histones are essentially the key to the DNA library. They tell you which 'shelves' of that library - or areas of the genome - are open or closed to information moving in and out. But since the differences between the different 'flavors' of histones are often extremely small, and it's likely that an antibody may react with more than one histone or in different ways depending on the type of test being used in the lab. It makes scientific precision very difficult," Lieb notes.

In a paper published today in the journal Nature Structural and Molecular Biology, Lieb and his colleagues from across the country describe how they tested more than 200 antibodies against 57 histone modifications (or flavors) in three different organisms, using three different tests commonly used in this kind of genetic analysis. They found that about 25 percent of antibodies currently sold have a problem with specificity - targeting the anticipated histone - in a given test. They believe that this proportion is likely to remain steady over time.

"So we thought, ok, we need to help ourselves as scientists. We set up a web-based searchable database at http://compbio.med.harvard.edu/antibodies. Our results are there and other scientists can also post their results so that we have a self-sustaining, up-to-date source of information that is really important to scientists working to understand a broad range of genetic phenomena," he said.
-end-
The research was funded by the National Human Genome Research Institute (part of the United States National Institutes of Health) and included researchers from the Universities of California at Santa Cruz, Berkeley, and San Diego, the Lawrence Berkeley National Laboratory, the Ludwig Institute for Cancer Research, Harvard Medical School, the University of Cambridge (UK), Washington University in St. Louis, Ontario Institute for Cancer Research (Canada) and Rutgers University.

University of North Carolina Health Care

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.