Study shows antibody therapy clears Alzheimer's plaques in mice

December 05, 2012

Antibodies against amyloid beta (Aβ) protein deposits that are thought to play a role in Alzheimer's disease have shown some success in preventing the buildup of deposits in animals, but they have not been effective at removing preexisting deposits. Now researchers reporting in the December issue of the Cell Press journal Neuron show that a modified antibody was able to clear preexisting Aβ deposits in a mouse model of Alzheimer's disease.

"These findings have important implications for current and future development of antibodies for the treatment of Alzheimer's disease," says first author Ronald DeMattos, PhD, of Eli Lilly and Company.

One of the hallmarks of Alzheimer's disease is the accumulation between nerve cells of hard, insoluble protein fragments called amyloid plaques (or deposits). These plaques consist of Aβ fragments that are normally broken down and eliminated in the healthy brain. Emerging literature suggests that extensive plaque deposition occurs in Alzheimer's disease patients some 10 years prior to first memory complaint, and by the time of diagnosis, plaque deposition is already reported to be at or near maximal levels.

Immunotherapy for Alzheimer's disease is a promising therapeutic approach that uses antibodies to target and clear Aβ that exists as a soluble peptide or within insoluble deposits. Thus far, many investigators have utilized antibodies that can bind both soluble and insoluble forms of Aβ. These antibodies are effective in reducing amyloid deposition in mice prone to developing plaques, when given as a preventative measure; however, when given to aged mice with preexisting plaques, they have little or no effect and often cause severe side effects.

Dr. DeMattos and his colleagues hypothesized that these antibodies are unable to remove existing plaques because they become saturated with soluble Aβ when they enter the brain, and as such they are not able to bind to their intended target. To test this hypothesis, they developed a genetically engineered antibody that selectively targets the plaques.

The Lilly researchers found that their plaque-specific antibody crossed the blood-brain barrier, bound to deposited beta amyloid, and caused robust clearance of preexisting plaques in mice without causing microhemorrhage. A comparator antibody that bound to both soluble and insoluble Aβ did not effectively lower existing plaques yet caused an increase in microhemorrhage. "The data suggest that an antibody that binds to only insoluble amyloid beta is likely critical for plaque removal without the associated adverse event of microhemorrhage," says Dr. DeMattos.

The Lilly researchers believe these results are consistent with their original hypothesis. "Target engagement is fundamental for the clearance of deposited plaques, and these results highlight that approaches aimed at increasing antibody binding, or target engagement, will result in significant plaque clearance," says Dr. DeMattos.

The findings may help explain why the Alzheimer's drug bapineuzumab was no better than placebo in two recent late-stage trials in patients who had mild to moderate Alzheimer's disease. Bapineuzumab binds to both soluble and insoluble beta amyloid.
DeMattos et al.: "A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer's disease mice."

Cell Press

Related Antibodies Articles from Brightsurf:

Scientist develops new way to test for COVID-19 antibodies
New research details how a cell-free test rapidly detects COVID-19 neutralizing antibodies and could aid in vaccine testing and drug discovery efforts.

Mussels connect antibodies to treat cancer
POSTECH research team develops innovative local anticancer immunotherapy technology using mussel protein.

For an effective COVID vaccine, look beyond antibodies to T-cells
Most vaccine developers are aiming solely for a robust antibody response against the SARS-CoV-2 virus, despite evidence that antibodies are not the body's primary protective response to infection by coronaviruses, says Marc Hellerstein of UC Berkeley.

Children can have COVID-19 antibodies and virus in their system simultaneously
With many questions remaining around how children spread COVID-19, Children's National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus.

The behavior of therapeutic antibodies in immunotherapy
Since the late 1990s, immunotherapy has been the frontline treatment against lymphomas where synthetic antibodies are used to stop the proliferation of cancerous white blood cells.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Seroprevalence of antibodies to SARS-CoV-2 in 10 US sites
This study estimates how common SARS-CoV-2 antibodies are in convenience samples from 10 geographic sites in the United States.

Neutralizing antibodies in the battle against COVID-19
An important line of defense against SARS-CoV-2 is the formation of neutralizing antibodies.

Three new studies identify neutralizing antibodies against SARS-CoV-2
A trio of papers describes several newly discovered human antibodies that target the SARS-CoV-2 virus, isolated from survivors of SARS-CoV-2 and SARS-CoV infection.

More effective human antibodies possible with chicken cells
Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories.

Read More: Antibodies News and Antibodies Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to