Pokemon provides rare opening for IU study of face-recognition processes

December 05, 2012

BLOOMINGTON, Ind. -- At a Bloomington, Ind., toy store, kids ages 8 to 12 gather weekly to trade Pokemon cards and share their mutual absorption in the intrigue and adventure of Pokemon.

This may seem an unlikely source of material to test theories in cognitive neuroscience. But that is where Indiana University brain scientists Karin Harman James and Tom James were when an idea took hold.

"We were down at the club with our son, watching the way the kids talked about the cards, and noticed it was bigger than just a trading game," Tom James said.

Pokemon has since provided a rich testing ground for a theory of facial cognition that until now has been difficult to support. With the use of cutting-edge neuroimaging, the study challenges the prevailing theory of face recognition by offering new evidence for a theory that face recognition depends on a generalized system for recognizing objects, rather than a special area of the brain just for this function.

SPECIFICITY vs. EXPERTISE: THE FACE-RECOGNITION DEBATE

When it comes to facial recognition, brain scientists agree: As human beings, we have a highly sensitive and efficient cognitive and neural mechanism for recognizing faces. In a matter of milliseconds, we pick up the subtleties in facial structure and shape, as well as facial expressions. We instantly recognize or identify people and who we are in relation to them.

From there, agreement about how brains process faces ends, and scientists typically ascribe to one of two theories, the specificity or expertise hypothesis. The leading theory maintains that "to be so efficient, our brains must have a special face-processing module, a region of the cortex, cognitively separate from the rest of cognition, specific to faces and not used for anything else," said Tom James, associate professor in the Department of Psychological and Brain Sciences in the IU Bloomington College of Arts and Sciences.

Others, among them Tom and Karin James, an assistant professor in the same department, contend that faces are important and special, but they don't require a separate system. Instead, facial recognition occurs as part of a more generalized system for recognizing objects in which faces "recruit certain parts of that system much more strongly than any other object," Tom James said. "The fact that faces are so special causes our brains to change over time through experience and learn how to cope with this special stimulus through development. "

Because we typically develop an expertise in face recognition that exceeds that of any other object, it is nearly impossible to show how the system might work similarly for other objects, especially in adults in whom facial recognition is so highly developed compared to other areas of expertise. Previous studies have come close to showing that adult expertise in dogs or birds for dog show judges or birdwatchers, for example, activates the same area of the brain as faces, but the results are not strong enough to conclusively support one or the other theory.

In the children encountered at the Pokemon club, Karin and Tom James saw a unique opportunity. Not only are their brains less developed with respect to facial recognition, but the degree to which these children have studied the Pokemon cards gives them a level of expertise comparable to expertise that as children they have with faces. The level of interest, in fact, reflects a quality Tom James refers to as an Extremely Intense Interest, or EII, which occurs in 30 percent of the child population. Children with EIIs show a level of interest, bordering on obsession, in a particular class of objects for a limited time.

The combination of their less developed face-processing systems and an EII made the children well suited for testing the theory of a more generalized system that processes faces and other objects of expertise that have highly individual identities.

POKEMON IN THE SCANNER

The study recruited 23 children, 10 in the group of Pokemon experts, 13 in a group of non-experts or controls. Each child looked at faces, Pokemon cards with characters and those with objects, as well as Digimon cards, while in an fMRI scanner. Of the Pokemon cards, the characters are the ones that children engage with the most and that take on a particular identity. None of the children were experts in Digimon.

"If all this experience they have with the Pokemon characters is really changing the children's brains, then we should see brain signals in the experts that are closer to the brain signals we see with faces," Tom James said.

The results decisively support this hypothesis. The experts show a strong response to the Pokemon characters in areas of the brain that respond to faces and the novices don't. Likewise, experts respond more strongly to Pokemon character cards than object cards, while controls showed little difference between the two.

"Those two findings are the main thrust of the argument and make it very compelling as a case for expertise over face specificity," Tom James said. "That this region of the brain that processes faces is sensitive to the amount of experience you have with a particular stimulus is evidence for the expertise hypothesis."
-end-
The study, "Expert individuation of objects increases activation in the fusiform face area of children," is in press at the journal NeuroImage and can be viewed online. It was conducted with equal contribution by Tom James and Karin Harman James, both with the Cognitive Science Program at IU Bloomington and its Program in Neuroscience.

It was supported by the Indiana METACyt Initiative of Indiana University; a major grant from Lilly Endowment Inc.; and by the IU Bloomington College of Arts and Sciences.

For a copy of the study, or to speak with Karin or Tom James, contact Liz Rosdeitcher at 812-855-4507 or rosdeitc@indiana.edu. For additional assistance, contact Tracy James at 812-855-0084 or traljame@iu.edu; tweeting @Vitality_IU, with more news from IU at #IUNews. Blogging at Health & Vitality (https://iu.edu/~iunews/blogs/health-and-vitality/).

Indiana University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.